Bomber
Weapons
Defense

Computer
Study

Final Engineering Report

INCREMENTAL COMPUTER
LOGIC AND PROGRAMMIN

Volume 4 October 1956

CONTRACT NUMBER PROJECT NUMBER
AF 33 (616) -2326 UNIVAC 2052
Neowsington Famnd Vinivac

DIVISION OF SPERRY RAND CORPORATION
1902 WEST MINNEHAMA AVE. ST. PAUL W4, MINNESOTA

FINAL ENGINEERING REPORT
VOLUME 1V

INCREMENTAL COMPUTER LOGIC
AND PROGRAMMING

CONTRACT NUMBER | PX 5(;~4 PROJECT NUMBER
AF33(616) -2326 : UNIVAC 2052

DIVISION OF SPERRY RAND CORPORATION
1902 WEST MINNEHANA AVE ST PAUL W4, MINNESOTA'

PX 56-4

INTRODUCTION

This volume describes the incremental computer from the operational point
of view, "'In brief, the computer accepts reathime analog inputs and continu-
ously modifies pertinent functions of the variables so as to yield updated out-
put functions, For example, the fire control problem has as inputs the vector
position and vector velocity of an étiaéker and computes as outpuis the azimuth

and elevation .lead angles, Only the change of the output function is computed,

~and this is added to the initial function value to give the updated value, The

computer operates by performing one basic combutation (whose formulation is the
basic algorism discussed later) about 64 times every drum revolution, The
quantitiéé necessary for a computation are read off the drum serially and out
of the random access memory during a minor cycle,

The detailed analysis of the mathematical operation of the computer and
the points considered in programming énd coding follow as outlined below,

_A khowledée §f Section I is not strictly necessary io the practical opera-
tion of the computér except perhaps for the‘section on errors, It is invaluable
for a mathematical understanding of the computer action, however, and the spe-
cial techniques discussed indicate interesting but less obvious possibilities

of the computer,

il

PX 56-4

TABLE OF CONTENTS

MATHEMATICAL ANALYSIS OF OPERATIONS

Introduction , , , ., .,
Machine Algorism , , , ., ., . .

Qualitative Description of Algorisms , , , , ., . .

(1) Integral , , ., . .

(2) Time Derivative , , : : : :
(3) Logarithm L] .] . ° L] . . e
(4) Exponential , , , ., ., . .

Operations ., , , , . ,

{1) Sum and Difference

(2) Product s i it i et e e e b0 e e e
(3)Qu0tient onoooe‘ouaoeooo-ooa'ooooo
(4) Square ROOt . . . 4 v v v 4 v s o v o o 0 00 ce oo
(5) Integrals , . 4 o v o v v v v o o o o 0 060 0o e oo
(6) Derivatives , , , G e s s e o 0 e 6 0 0 s 6 s
(7) Integral With & Reclprocal Integrand e o o 0 6 6 o o
(B)Exponentialn‘ooocoogoooocwooonoe‘e

Special Algorisms , , , , . . .

(I)Sigq'oo-ooo‘oonoe
(2) Absolute Value , , ,

(3) Independent Variable (Time)
(4) Gating , , ., ., ., ., ...

{(5) Errors in Incremental Algorisms | ,

(6) Summary ¢ 8 e © o 6 © e ¢ o

Applications of the Incremental
Steps e L @ L] Ll L] ® L] L3 ® L4 L] L

(15 Filters , .-, ;

(2) Polynomial o' °
(3) Sine And Cosine , , , , , .
(4) Conclusien , , , ., ., ..

° * O < © ® L e o ° o ° Q

L] © © o (4 L4 °] ® ® L] ® @

L) L] L ® ° @ @ L @ @ L e L

<@ e (]
L ® L4 L ° o -] L] © L] ® ® L
® L] ¢ . [® © © L e © L ®
L] © L4 e @ o @ L] e L] L ® L]
® ® e L ® L) ° ® @ © © L o

~ Quantitative Description of Incremental Arithmetic

© ° L] L e L ® © ® L] L] L] ®

° ® ® L] L] ® L] L L ® L4 e o

L] L] L] e L] L] ’@ ®© ® L] L] o
L] ® L] 9’6] L] L] L2 o
Control ® e 5 0 0 o o o
. [° o ® L] [] ® L] RQ ® e

L] L] ® o ® o ® e
® e o ® L] ® o o L]] (-2 o

Techniques Using Several

° ® L] L] ° L] L] L ® L L] L] L

[:] ® [] -]
e & o o
5 & o @
® o o a
e 8 o o
e & o a
e o o o
s @ o o
e o o e
e o & & .
> L3 (] >
o o a a
e o a o

e L] L3 L] R L]

Page

OB & €O ==

32

32
33
35

42

iit

PX 56-4

2, PROGRAMMING THE INCREMENTAL COMPUTER , , , . ., .

g.

TABLE OF CONTENIS {cont,)

Introduction , , . . ,
Definitions , , . o »
Programming , ., . . .

e & o
@
°
°
®
e
®
L]
L]
L
L]

(1) Choice Of Functions ., ., . v o « o o o o
(2) Sequeﬂcing o ¢ © @& ¢ © ' § © & ® © © o ©

Scaling ¢ e © © @ © e 0o e o o © © 0 ® © © ©

(1) Conservative Scaling , , ..
(2) Word Length Considerations
(3) Inputs - Range Expansion ,
(4) Example: Scaling x2 , , .,

o8 & o
®© e e o
e o @ o
e .9 o
e & © o
8 o © o
e o o o

Coefficient Relationships ., . ., . . o + o &

(l) Codventions e © e e © e e © © e ©® © o0 '0
(2) Basic Algorism and Associated Equations

Initiél Values ® ¢ '® o e o e B © 6 €6 © © & O

€1) Introduction ., , . ., ¢ .o o o o o o o 0 o.
(2) Comparison . , ., . o o o o o s o o « o »

MethOds ¢ o © 8 o ® o 0 © © ®» © © © © 6 O .0

(1) Introduction , v v o o o o &

{2) Sign Convention , o s o o' o o o
Checking Of Computed Program , , , . o & o

(n Introduction e 6 0 o o o o

€2) Simulation , 0 0 66 s s 0 s
Simulation e o & 6 © o o © © o 8 © & © o o o
(1) Introduction , , , s s 0 o & &
(2) SIMIC e ®© o 8 o © © & ©6 © @ ©.9 e e o0 ®
(3) Program ¢ @& & e 8 o o © © 6 © © .© 0 * ©
(4) Constants , , o o ¢ s 0 o o o
(5) Output Heading , , , . ., . v v o o o o »
(6) Input L] L] ® L] L] e L] ° L] o L] (] ® ®© 3 e o
(7) Control |, |, 0 v o o6 uveoweoe
(8) Computation Time , , , . ., , , &
(9) DYSIMIC e e o ®o © 6 o © 0 o6 e o e ; o o

4 o 8 o 6 e © e o

° (] e 9
L. (3 ® -]

@ © o 6 o 8 © 8 0o

e e & o

*® & o ® @ o & © o

® L 3 9

e & 8 © o @ ° o o

e o @ o

3 @ 4 ®© @0 ©o e & o

"e & & © e 6 o ° o

a L] L] L]

Page

v

PX 56-4

4.

'CODING

TABLE OF CONIENTS

J. Demonstration Program

-] L) o L] L] ° Q © e

a, Introduction ., , ,';
b, Progedure In Coding .

{1) Constants , , , .
(2) Input/Output ., ,

(3) Combining Commands

(4) Word Length , , .

a

(]

o

®

zeeoa

°

°

(5) Use of Double Head on
(6) Stability Comparisons

SIMULATION REPORT ,

- L] L]

(-3

t"o a o e

-Line

o o & ©

o 0. &% a

2 o © ©

{cont,)

e

o £ 3 ° .o o ®

N
s & 8 8 o O

@ 8o 5 8 o o

[} L] ° ® L] L}

Pége
75
92

92
92

99
100
102
103
103
104

108

PX 56-4

Table No,
i

@ N & N & e N

LIST OF TABLES

: Equatiﬁﬂs ® @ o 5 e 6 o ¢>e e ¢ @ -

Ihputs s o ® © [] ® L [Q 040-0
Tabulation No, 1 , , , e;a‘a»o«o
Sample Scaling Calculations , . ,

Samplé}lnitial Value Calculations

®

4 ‘
Incremental Computer Program - Tabulation

Incremental Computer Program - Tabulation

Demonstration Program Univac SIMIC Input Tape

Page
77
78

8l
82

85
87

vi

PX 56-4

Figure
1

N

2
3

-Setting for x

2

LIST OF FIGURES

e & ¢ © 6 ¢ © @ Q0 2 e © O 0 0O ¢ € @ o ¢

Tabulation No, 2 Check , ., , , , . , & o o 6 e 0 0 o o

Command Codes, Incremental COMPULET . . o o o ¢ o o o

Page

58
69
93

vll’

PX 56-4

1. MATHEMATICAL ANALYSIS OF OYPERATION'S

va, INTRODUCTION, - The application of digital techniques to the methods
of solving mathematical problems normally associated with analog computers leads
to a hybrid computer tha{ has some of the édvantages and some of the limitations
of both the anélog computer and the general purpose digital computer, The ERA
incremental computer, as presently designed, carries out num;rical computations
By acting on the small, discrete changes of the input variables to compute the
small, discrete changes in the output variables, In the memory of the computer
are stored the orders for a number of individual stebs'(called "minor cycles")
of numerical computation, During one major cycle, all the variables in each
minor cycle undergo changes of one increment, i,e,, plus or minus one, At the
endkof each minor cycle, the output of thét cycle is stored in the random ac-
cess memory as a plus»or minus one, This stored output can be used to modify
any of the variables in any of the several steps including the step from which

the output is obtained, In any minor cycle, those numbers whose changes are

determined by other minor cycles (through the random access memory) or by an -

Jinput quantity are called independent variables, and those that are changed by

the step itself are called dependent variables,

An incremental computer is useful primarily because it is capable of doing
fairly éompiicgted operations within a small computer and it produces an up-to-
date answer output once every major cyclé' i.e,, about once every 0,005 seconds,

The incremental coﬁputer can be made small because it§ arithmetic section
only adds, sdbtracts, and complements, Theséwcan be combined to form the more
complicated operatiohs within a‘single step,

In principle; the incremental computer différs from a general purpose com-

puter in that instead of performing a complete numerical operation at each step

of each major cycle, it computes the change in that step’s solution due to the

g PX 56-4

change in variables since the last major cycle, For example, instead of form-
ing the sums U Q,_1 + VT, 1, UgQ, + V Ty, UgQue1 + VoTy+1, ete., directly in

successive major cycles, the incremental computer forms
UgQp + VoTy = UgQu1 + VoTyol * Ug(Qy - Q1) * Vo(Ty “YTHL;)
or A[UL0, + VoT,] = UsAQ, + VAT,

and A[UQQMI-» VoTurl] = Uoh Qpay + VoATyy), ete

By restricting the change of each variable to a +1 or -1 each major cycle,

these operations are accomplished by addition or subtraction, Through the use

of these simple operations, appropriately controlled, the incremental. computer

can form sums, differences, products, quotients, square roots, integrals, deri-

vatives, integrals with an inverse integfand, logarithms, and exponentials,
Any one of these arithmetic operations can be done in a_single minor cycle,

It is basic to the use of an incremental computef that the error of one in-
crement in any variable is small enough so that to neglecf’it would not cause
serious errors in the answers, This implies that in five milliseconds the
énswers themselvés change by a "negligible amount", This, in’turn, implies
that five milliseconds is a "negligible” pefiod of time, In other words the
incremental computer is useful for real time control of systems whose time con-
stants are of the order of seconds or longer, In systems with relatively long
time constants, the answers can be changed by large numhers of increménts dur-
ing a period of time short compared to the time constants, With longer time
constants it ié possible to represent the variables more accurately within the
machine by making one increment a smaller part of the variable, The only prac-
tical limit on the accuracy of the numerical solutions of the mathematical
problem: programmed in the incremental coﬁputer is the length of pime»to effect

the changes in the variables,

PX 56-4

In direct analogy to analog computers, the incremental computer can be used
for the solution of implicit equations, The:palrs of operations multiply and
divide, integra;e and differentiate, squaring and extracting a square rooi; and
generating the logarithm and the exponential, can be considered as eiplicit-
implicit pairs in the incremental computer, Simultaneous and differential equa-
tions are solved by an implicit drrangement Jjust as are similar probiems in an
analog computer, Théy are fu;damentally different, however, because the incre-
mental computer handles numbers digitally with the associated advantages
numerically and eléctrically,

b, MACHINE ALGORISM, - The overall problem to be solved by the incremenfal

computer must be divided into a seqﬁence of arithmetic operations or steps,

The steps are coupled by the increments stéred in the random acceés memory; the
output increments from one step are the input increments'to other stebs, In
the presently designed equipment, the heart of the storage system is the mag-
netic drum, The commands and numbers required for each of the steps of the
mathematical problem are stored sequentially on several tracks on thé drum,
Each step is acted on by the arithmetic section of the computer once each drum
revolution, that is, one drum revolution corresponds to one major cycle,

Let us consider the operations performed by the arithmetic section of the
computer during a single step, During each step four binary numbers are read
from the magnetic drum by four reading heads in the arithmetic section of the
computer, These numbers will be denoted as U, ,, Vi 1, Rj_3, and S, Three of
these numbers,:Ui_l, Vi 1. and Ry _;, are processed in accordance with the com-
mands from the control sectibn df the combuter and the new numbers are returned
to replace the previously read numbers in their respective places, The number

S is a constant scale factor which remains on the drum,

PX 56-4

At each step the arithmetic section forms the incremtal sum:

To simplify discussion, the increment will be considered unity and all machine

numbers will be considered integers, That is, the increments AT, & Qq, APy,
and A Wy, and the incremental changes in the variables Uj and V4, namely AU
and AVy, can have the values +1 or -1, These incremental values are read from
the random access memory from positions givén by the commands interpreted by
the control section, In many cases some of the increhents are programmed'mo be
zero for all major cycles of a particular step, i,e,, they are not read from
the random access memory,

By summing a single step over n major cycles, the values of the variables

during the nth major cycle can be determined, That is,

n 4 n n n n
2 Ry -Byp) = 3 UjAQp + T Vi ATy +SY APy - ST AW
i=1 i=1 i=1 i=1 i=1 *
n n .
or R, - Ry = E U;8Q; ¢ }_j Vi.1BTy + S(P, - Py) - SOW, - W) (2

1 i=1

In the computer R, = O in every case, In all but special cases the incremental
changes in the dependent variable are chosen to cause R, to go toward zero,

When R, is sufficiently close to zero to be considered negligible, the siep is

" “settled”, When it has settled, the equétion for the machine algorism for that

is approximately:

) (3

n n :
0= % UjAQ; + i};l Vi 1ATj + SR, - P) - SOW_ - W,

i=1
In each case the increments are considered small, If we consider them to be

differentials, equation 3 suggests:

0= rfn.UdQ . fn vdr + S[p, - By] - S[H, - W, (4
: V] 0 ‘ ‘

c. QUALITATIVE DESCRIPTION OF ALGORISMS, - In order to determine exactly
the course of an arithmetic operation performed by a step pf the incremental
computer, equation 1 must be used with the mathematics of finite differences,
It is useful to use equation 4 in a qualitative way to aﬁproximate'the answefé
actually obtained in the incremental computer, In applications,lthe situation
is reversed; the problem is to find an incremental program which will approxi-
méte the desired mathemétics, It is hoped that the qualitative use of equation
4 will clarify the principles of the arithmetic algori;ms,

Sum and differences: Set U and V constant and solve for W, Then from
equation 4 | |

.y

RS

n | n
UpdQ + [VAT + S(B, - Bg) - SGH, - Wy
. 0 .

U Q, -Q) +V (T, -T.)
Wy = 0*¥n 0 < o'’n o’ , Py - Pg.+ W,

Let the initial conditidns satisfy

;’VOT0 + U0,

Wo = 5 + Po
Then
UQ.+VT '
R | ®

That is, through the use of the sum'algorism up to three variables may be added
- in the form |
X = X} + 89Xy + agXq
where ap and ag must be rational numbers, ag and ag are the quotient of the

3

N3

Y

&

‘!’} positive or negative integers Uy, and V, divided by the integer S,

PX 56-4

Prédupt and quotient: Set dT = dU, dQ = dV, and solve for W, Then

, n n :
o= [udv+ [vau + s, - B - SO - Wy
o 0

n
+~of (UdV_+ Vdu

Wn=W0+Pn-PO

S
=w0*‘Pn‘PO;PAYL§*EQX‘Q=O'PO+E§XQ+PH+X£“Q
Letwozggy—g--tl)o ‘ K)
Then Wn = ngﬂ + P, multiplication A | (6)
or U, =-§£yﬂvi—gﬂl, divisién : , (7

Clearly, from equations 6 and 7, these algorisms should more properly be
called "Product and Sum” and "Sum and Quotienm“ in general,
Square Root: The square root of a variable can be derived from the incre-

mental algorism by letting U =V =T =@, Then equation 4 becomes:

0

n n
[vave [vav+ s, - B - SO - W)
o]

0=v2 V2 _Ss@_ -P, - W, +P)
V2 =S -P) + V2 - SOH, - Py
,
Let Vo° = SGN, - Py)
V2 = s - P)
and V= SO - P) ®

(1) INTEGRAL, - In equation 4 the availability of integration is obvious,
However, in a step doing a single integration it is SOmetimes'advantageous to
set U=V, X, =X, =0, and AW = AT, For more specific details refer to the

quantitative description of integration,

PX 56-4

(2) TIME DERIVATiVE, - Differentiation with respect to time can be
treated as the inverse of integration, However, special care must be taken to
make it stable, Differentiation is accomplished by letting the U variable be

constant, the T variable be time, and dV = dQ and solve for V, Equation 4 be-

comes;
n n
0= [Uudv+ [Vit +S Py - P, - Wy W,
(4] 0 .
Differentiating:
R\ dP AW
0= oa+v+sdt—8’a‘i
d av o . ' |
V=SG 0 - P) - oSt | : 9)

If U, were zero, V would bg;proportional té the derivativé\bf theltunctlpn W-P,
This algorism would propérly’be called "Addition and Differentiation“, However,
the last term with Uy # 0 is necessary to obtain a stable differentiation algo-
_rism ' This stability term can be compensated for, The accuracy of Fhe coﬁpen-
sation is determined by the number of minor cycles used,

Integral with-a Reciprocal Integrand,

Let U = V and solve for Q + T in equation 4:
B

o
]

n n ' .
[vag+ [var « s, - B - SO, - W)
o 0 ,

Differentiating: -
0=Vd(Q + T) + Sd(P - W)
d(Q +T) =§Q_QL_:__E).

v
Integrating: ' o '
Q+T=sf9—9—"v—*—?l' | 4 (10)
Usually Q =T and P = 0, Then.equation 10 becomesb “ .
=S e | o an

PX 56-4

(3) LOGARITHM, - Reciprocal integration can be used to generate the

logarithm, If we let V = W, equation 11 becomes:

S{dw
0-=3/
or Q= 2 log, W +C o | " f(lZ)

{4) EXPONENTIAL, - The exponential can be obtained from the logarithm

by solvihg for W, Then

2
§Q +C° = loge W
gg + CV
ed = eloge¥
gg + Ce .
W= ed / | \ | (13)

The foregeing has been a qualitative treatment of the use of the RRU incre-
mental computer, The following discussion is a more formal presentation in-
cluding the specific restrictive formulas for the step and the choice of the

sign of the increment of the dependent variable to make the value of R, go toward

~ zero,

d, .QUANTITATiVE DESCRIPTION OF INCREMENTAL ARITHMETIC OPERATIONS, - The
algoiisms ﬁreviously qualitatﬂwely described are specifically described by the
choices of the increments amd'inﬁmial vélues In any step there are six incre- -
ments to be specified (AUj, ATy, AVL, 6Qy, APy, and Awi); two initial

values (U, and v, o)., and the scale factor (S), The initial value of R;, that

1s, Ry, 1s always fixed at zero, The correct combination of the programmed

initial values, the programmed selection of the six increments in each step,
and the wired-in machine algorism represented by equation 1 cause the incre-
mental computer to perform the arithmetic operatﬂons described above as welk
as some specﬁal operations described later, Those variables of a given step

&hat have their increments determined by other than the step 1&self e.g., by

PX 56-4

other steps, are called independent variables, The increment of the dependent

variable depends on the sign of the remainder, R,, of the step in question

(which may vary from major cycle to majer cycle) and usuélly on the non-varying |
sign of other variables or constants as well, ‘Fur convenience of notation the
signum function will be used, It is defined by: |
Signum x=sgn x= + 1 for x> 0 |
| = -1 - forxe O
The brogrammer is free to ”éhoose the increments AUy, AV,, APy, Awi,
AQy, and AT; from any position in the random access memory, Eadh increment

stored in the random access memory is either sgn Ry, forh?ne of the steps or .

-sgn {Vinput - V) for one of the-ihput quantities,

(1) SUM AND DIFFERENCE. - To perform the previously mentioned sum:
_ Uan + VOTn '

W, = 3 + Py, ' (5)
set AU = AV; =0 - | (14)
UQ, + VT .
. Z0%0 * Yolo : \
Wo = "5 + B | | (15).
and AW;,; = sgn Ry sgn S S (16)

The sense of equation 16 is such that the increments of W tend to reduce the

, magnitude of Ry, Equation 1 becomes:

Ri - Ri~1 = UOAQi + VOATi + SAPi - SAWﬁ

By summing this equétion for n major cycles one finds that:

n . n " n n
2 Ry -Ry D =Uy ¥ Qf -Q;_ 1) +Vy T (T4 =T,) +S % (Py =Py 1)
A e 8 o 2 Wi i-1 o & 1 ,M; & T i-1

n
-5 12 Wy - W,

=1
Ry - By = UglQq - Q) + V (T, - Tp) + 5(B, - Bg) - SO - W) (18)

Solving equation 18 for W;:

PX 50-4

. ‘

UQ. + VT UQ.+ VT :
,W,,=“*°*""—§“2J,+Pn-"9"9‘§°“u~%+wo-§“ a9
Substituting equation 15 in equation 19 one has: |
U0Q, +V.T , R :
o¥n o’n n :
wn: S #Pn-s” . - (20)

‘Equation 20 is accurate as it stands, i,e,, no approximations have been made,

It is equivalent to equation 5 only if ggg' is negligible, Since equation 16

tends to reduce IRn!,.IRn! shohld eventually be sufficiently small, i,e,, when

the step has settled, When the step has settled, W is very nearly the desired

sum,
(2) PRODUCT, - The prbduct W= g! + P can be formed approximémely by
‘setting: |
AQ = AV, 1)
AT§ = AUy) | (22)
Wy = ‘S’v“ + P, o B (23
Awi = sgn Ry sgn S ; , ,-. (24)

Again the sense of equation 24 is to reduce iR“i° Substﬂtuting into equation 1

we have:

Ry = Ry_j + UzA Vi + Vi 1 AU; + SAP; - SAW |
=Ry} + UjAVy + Vi J AUy + Vi 305 4 - Uy JVg g + smi - S AW
=Ry) +UfAVy + Vy j0; - Uy (Vi | + SAP; - SAW, |

=Ryp ¢ UVy- Uy gVy g v SAPy - SO
=Rj_ 3 + A(UV)j + SAP; - SAW;4
Summing - | ‘
Ry - Ry = UpVy + SP, - UoVo - 5Py + SWy - SWy

Rn = UyVy, + SP, - SW,

w‘—wﬂ Rn

n = S +Pn-—s- - . . (25)

10

A 9U—-4

Equation 25 is exact; no approximations have been made in its derivation, If
this step is settled, gﬂ should be small enough that it can be neglected and
W, is approximately the desired product, -

(3) QUOTIENT, - As mentioned above, division is effected implicitly from
multiplication, To find thé quotient U = §£$v;—£l, the product UV is compared

to S(W - P) to determine whether U is too large or too small, This quotient

can be formed by setting:

AQ; = AVj : (26)
ATi = AUi | 27
UgVo = S(W, - P,) | (28)
AU; .y = -(sgn V) (sgn R)) (29)

Substituting into equation 1
Rj =Rj_] +UjAVy + Vi) AU; + SAP; - SAW; (30)
which is identical to the corresponding equation for multiplication, As for
multiplication, summing equation 30 yields:
Ry - Ro = UV, + S, - UgVg - SP, + SWy - SW_
Rn = UyVp + SPy - SW,
W, -P, R

U, =5 42 &
n vl’l Vn

No approximations have been made in the derivation of equation 31, Therefore,

2 (31)

U, is different from the desired quotient by the round off error gﬁ.
(4) SQUARE ROOT, - The square foot algorism is effected by subtracting
the product of the dependent variable times itself from the independent variable
input, The sign of this difference indicates the next change in the dependent
variable, The square root U =~/§TW_:—§7 is formed by setting
U =V, | - @
AT = BQy = AU = AV - | (33)

11

PX 56-4

U,2 = SW, - SP,

(34)
AUj,) = -sgn Ry sgn V, . : » (35)

Substituting in equation 1,

Ry = Ryy) + Uy AUy + Uy, AUy + SAPg - SAW,

Ry, + OW2), + SAP, - SAW;
Summing
2

= : u 2
Ry = Uy~ + SP, - SW, - U," - SP, + SW,

u,2 = Sk, - SP, + Ry, | | , - (36)

When R, settles to a negligible value, Un2 is approximately S(W, - Py), There-
fore, U, must be close to thehdesired square root, Notice again theiimplicit
~approach to the extraction of the square ropot, ;;; -
(5) INTEGRALS, - Integrals can be approximated in the incremental_c;m- :
putér in a single step in several ways,"One way is to fofm suﬁs of ihe inte-

grands, That is, let U, V, P, Q, and T be independent variables, Solve equa-

tion 1 for W, Then:

Ri =4 Ri-l + UiAQi + Vi-l ATi + SAPI -_SAWi . . (1)
n : n . n ‘
T oRy-Riy = 2 {UAQ + Vi ATy} + S X (AP - AW))
i=1 =1 i=1 N
n n : ' ,
Ry = 2 UjAQy + X Vi ATy + SP, - SW, - SP, + SW,
i=] i=1 ' ' : '
Neglecting R, .
1 &] & ' o -
Wp =3 izl U380 +5 121 Vio1ATy + Py - Py + W, S &1
Equatidg 37638 the Euler approximation to:
1 Qn e Ty S
Wo=35 [vae+s ["varer,-p ew, | ~ (38)
' .‘Qo To . .

12

PX 56-4

A second‘way to integrate is the following:
Let AUy = AV;
AQf = ATy
Up =V,
AWy = sQn Rj sgn S
Then equation 1 becomes
Ry =Rj_) + UjAQy + Uy jAQ; + SAP; - SAW,

n n n i
L2 Ri-Rj 1 =2 (U3 +0; DAQ; +5 ¥ (AP) - AWy)
i=1 i=1 i=1

R, = 121 Uy + 05 DBQ; + 5By - Py - Wy + Wy) | (39)
Neglecting R,

14 ‘
W, =3 1'2:,1 Uy +U; DAQ; + Py - P+ W, (40)

Equation 40 is the trapezoidal approximation tos

Q A 4 '
_2 n |
w,,_-s—of UdQ + P, - Py + W | | (41
.

In those cases where the integraﬁd U is an 1ncremehtally single valued function
of the independent variable Q, the trapezoidal form is drift free, i.e,, if the
variable Q changes from its initial value and returns to its_initial value, W,
will becomé Wy if U is a single valued function of Q, Anbexample of a single
valued.function is a poiynomial in Q, An example of a function that is not an_

incrementally single valued function is sin Q which is obtained by double inte- -

' gration rather than polynomial approximation,

(6) DERIVATIVES, - The incremental comphter,is capable of taking time

derivatives in a single step if properly stabilized, The restrictions of the

algorism are:

13

PX 56-4

Summing

AVi = APi =0
AU; = ATy

H
|

- sgn Ry

Substituting in equation 1:
Ry = Ri-—i + Uy ¢ VoA‘Ui - SAW;

Ry - Re —Z Uy + Vo(U, - Uy) - SN, - W)

i=1

Neglecting an

n
Zl Uj + Vo(Up - Up) = SWy - W)
i= _

The term Z Uj is approximately.

i=l

B . [tpt
R lf % u(ryar
) :

2

Then aﬁproxﬁmately:

A
tats 5
1f UCTIAT + Vg(Uy - Ug) = SOy - W)

—-—

2.
Diffcrenmiating:
L. UGty dW(ty)
Ude_ + V. = n
(g * D+ Vo= =57

But

So

Now

L o | |
U(mn + -1—),= U€t,) + -%U(tu) + _llll’(tn) + %-gil{(tn) - - -

W R
U(t):S-——d-(—t-L fgéll-%u-%sg---
nooow ‘
S%‘%:U(tn) +(Vo'+%)%g*vg+%§---

_, _ : (V + 2 '
Ult, ¢ Vg +) = Uty ¢ W+ b vy +--—-—L 0ou-

14

PX 56-4

2
: (v. +1
, o

So S’g% =U(t, + Vg4 + %) + [% "“""“2;2"

v
S =0, +Vo+D -2 (g +D U

|

b --

In other words U(t) is‘approxlmately equal to S times the derivative of W

at time (t + Vy + %). The V, which was necessary for stability introduces a

time lag, To make this lag small, one must try to make V, small,

The size of

V, is determined by the nature of W, If V, is too small and the second deriva-

tive of W is too high, U(t) will vary to both sides of the correct derivative

value, eventually settling to the correct one, If V, is too large, the delay

will be unnecessarily long,

(7) INTEGRAL WITH A RECIPROCAL INTEGRAND, - A variation of the integral

algorism is the form:
L Spdu
Qe =30

which is affected by letting:
AT! = AQi
A_“'i = AUy
APy =0
Ug =V,
80441 = - sgn Ry sgn U,

Substitutihg in équation 1

R, - R + SAW
. i -

Ui + 053

Summing over in cycles:

(42}

(43)
(44)
(45)

- (46)

(47)

15

rA 00-4

= aw s hi-Rg 9)
O - Q = Szvr:ﬁ"‘ P2 e
If one neglects the contributions of the term cohtaining the R’s,equation 48 is
approximately the integral equation 42,

Through the use of integration with a reciprocal integrand, the logarithm

can be generated, If we let Ui = Wi the form becomes:

0 =5/ - u
or Q = % log W ’ (50)

(8) EXPONENTIAL,, - The expoﬂéntial is ‘found from the logarithm algorisms
by letting Q be the independent variable and taking tﬁe increments of W from the
step as the dependent variable, The algorism is identical to that of the loga-

rithm except that instead of equation 47 the'dependént variable is determined

by:

A"’m = + (sgn R)(sgn S)
e, SPECIAL ALGORISMS, - The following algorisms are special in the sense
that they are not the usual arithmetic operations, They have been developed
for some special purpose during the evolution or study of the fire control ap-

plication, They are included here for completeness, as examples of the varia-

~tion of the incremental computer algorism, and for possible application in ser-

vicing or other programs, This section can be skipped by the reader without

losing the continuity of this presentation,

I Memoxy, Some time during each major cycle each position used in the random
access memory has its old increment value removed and the updated increment
entered, On some occasions it is desirable to have the previous value avail-

able, It is pessible to do this by using a step in the following way:

16

X 00-4

AWg,) = sgn Ry

Thai this is truly memory is proved as follows: With these restrictions equa-

tion 1 becomes:
| Ry = Ri;l + APi - AWy
If for 1 =n, Ry = AP, - 1, then
Rps; = Ry + APy, - AW,

= OPy - 1 + AP) - sgn { Py - 1)

éPn -1+ APn‘,l - APn

]

APy, -1

since sgn (1 - 1) =sgn (0) = + 1

-and sgn (-1 - 1) =sgn (-2) =-1

but initially
Ry, = 0, and sgn Ry = + 1 = AW
Ry =0+ AP - 1= APy - 1

Therefore, equation 50 is proven by mathematical induction,

(APn"l - l) = API’HI = Awn*z.
. or AW, AP,

In this case sgn

In other words, on the nth major cycle, if A P, i3 desired, APn is addressed

direct.ly; if AP, , is desired, Awn is addressed,
(1) SIGN. - Set |
Up = Vo, AUy = AVy, AT, = - AQ
'AAPi =0, AWj =sgn Ry ;, S=1
Then Ry =Ry) +U;AQ; - Uj 1 AQ - AWy
=Ry) + AUy AQ; - AWy

19

raA 90-49

.If for i = n

R, = AU, AQ, - 1, (52)
then AW,y = sgn (AU, AQ, - 1) = AU,AQ, ~(53)
and Rr;;l = AULAQ, - 1 + AU, AQp,) - AUnAQn
n+l AUn+l AQn+l -1
and since Ry = 0, R} =0+ AUJAQ) - AW, = AUIAQl - 1, equation 52 is

R

i

proved by induction, Therefore, equation 33, giving the desired product, is
proved,

(2) ABSOLUTE VALUE, - When a variable changes its magnitude by one, its
absolute value changes by one, If the variable is positive, both changes are
of the same sign; if negative, opposite sign, The change in the absolute value
of a variable upon a change in the variabie by one is given by:

Ai|X| = sgn X sgn AX; (54)

‘or A IXiI = sgn Xj Axi . (55)

One can form the product X; AX; by letting Uj = X; and AQ; = AX;, In order
to sense the sign of this product, it should be put in a remainder alone, In
other words a steﬁ which adds to the remainder the product XiAxi and subtracts>
the previous product xi-lei-l has as its remainder XiAXi_ The signum func-
tion of this remainder is the increment of the absolute value,

We have seen above that an 'increment can be stored for an extra major cycle
through the use of memory, One might expect a memory step would be required to

have available the Axi-l required to form xi-lei-l° In one special case this

‘memory step can be avoided, This case is the following:

If a variable, X, is calculated in step j, the sign of its remainder is
stored in the random access memory on the fifth digit period after the start of
step j + 1, At any time prior to the fifth digit period the old value AX; _; is

available, After the fifth digit period the new value Axi is available,

18

PX 050-4

During the step j + 1 the increments for the calculation of step j + 2 are be-

ing selected, Step J + 2 can be used to calculate the absolute value of X,

without a memory step by letting:
AUi = AA\.li = AQi‘ = Axi
ATy = -AX{)
Ug=Vy=+1

S=90

The. accumulation of the sign of the remainder of step j + 2 is the absolute
value of X, This step does not require servoing,
To prove that sgn Ry is A1|X|, consider the following:

If equations 36, 57, and 58 are substituted in equation 1, it becomes:

R

1]

Summing

Ry - Ry = XpAX, - XoA X,
R, = X,AX, - 1

If]xnl 22, sgn R, = sgn X4 X,

i =Rj1 + XiAX - X5 18X

(56)

NG

(58)
(59)

and sgn X AX, =-An|x| since if X changes by one with the same sign as X it-

self, its ibsolute value increas~s by one, If AX and X are of opposite sign,

the absolute value decreases,

If X, =+ 1, sgn Ry = AX, since sgn 0=+ 1, If X, =+ 1, AX,is a|x].

If X,

i

sgan#sgn-l=-l=An|X|,

Lastly, if X,

Xpy =-1land AX, =-1, sgn R, =sgn (+1 - 1) =sgn 0
| Therefore, for every value of X,, sgn Ry = A,Jxl, The accumulation of

these increments is the absolute value of X,

+1 = Anlxl‘

0, |su] =0, and & |x] = - 1 since |-1| = |1] 2+ 1. 1In this case

-land A X =+1, sgnR, =sgn (-1-1) = - 1 =An|X!, If

19

PX 56-4

}:NOTE: The rest;iction that the calculation of the absolute‘value’ahould
occur two minor cycles suﬁsequdﬁt tokthe galcullaion of the variable does not
detract from its nsefulness ﬁinbe thiq"tim#nq is usuqilj the most desired,

(3) INDEPENDENT VARIABLE (TIME) CONTROL, - In some servicing problems
it is desirable}t%-have an 1ndep§ndent variable change from one value to another’
und remain within one incremeﬁt of that value iﬁdetﬁnitely,g;Thqt ﬁao the change
in the varisble will consist ot*N + 1°s followed by an 1ndefﬂnitevlequence of

altefnately -land +1l, In order to perform this function three core memory

positions are used, o
»;“J

One memory position is used as a!constant + 1, Any position not otherwise
‘used can so serve, A second memory position $hould be a “step function”, i,e,,
¢ 1 for the first major cjcle“and -jl indéfinlteiy thereafter, This latter
function can be obtained by le‘tt.kingv‘ | -

iy, S ° | ‘;
AUy = AVy = AP; =0=§
801 % - 1 o
ATy, = - sgn R
CThen Rp=-1-1=.2
. Rp=.2.-1+1=.2 v
Ro=Byj-1+1=R, =-2
That is, after the fixst major éycleo\sghﬁﬂm z.] indefinite&y,

Givep these tw@ functionso‘the independent variable can be controlled in e
single step gy lettﬁnqﬁ | |

| Upg=Vo=N
AUy = AVy = Aﬂ'z 0\
Q) =+ 1

AW, = sgn Ry_)

1

PX 56-4

§=2
and AT = + sgn remainder of the step function,

N(G+ 1) +N(+ 1) -2 =4 2N -2

0

Then Ry
+ 2N -2+ N(+ 1) +N(-1) -2=¢ 2N - 4

H

Ro

| and if n S N + 1

Rp=R, g +N-N-2=R o-2=+2N-2n

Ry = 0

RNep = - 2

Byea = - 2+N-N+2=0

Rys2i = -2 +N-N+2=0

RN+2i+l =0 +N-N-2=-2
Therefore, the sign of this xemainder givés the desired function,

{4) GATING., - In some service problems it is desirable to gate certain
variables, Byv"gating" is meant either allowing a sequence of increments to be
duplicated exactly in a certain memory position until a certain time after which
th#t position will have alterﬁately plus ones and minus ones unconditionally,
or causing a membry position to have alternate plus and minus ones until a
certain iime after which a gi#en sequence of increments is duplicated, These
gates will be referred to as "initially open” or "initially closed" respectively,

Either of these gates requires a gate timing pulse, Incrementally the gate
timing step memory position has alternately plus one and minus one until the
switching time, At the switching time there will be one extra plus one and the
alternate sequence will continue thereafter, To effect such a function the

algorism is:

Up =0
Vo =3
S =2M

21

PX 56-4

AU; = -AVy = AWy = sgn Ry,

APy = 0

AT; = -AQy
We wish to have this timing sequence swﬂ‘tch when Ty = M, Let T be & ‘.variable
such that T, = 0 and 'i‘>0, To dvemonstrate that this gate timing step producéa
the desired sequence, substitute in equation 1, Then

Rp =0+ 1 (-AT)) + 3AT) - 2M = 2AT; - 2M<0

Ry = 24T} - 2 - 0AT, + 24Ty + 2M =2 (AT) + ATp) =2 (Tg - T 2 0
As long as the sequence is alternate U; will be + 1 for odd majon.'. cycles and O
for even major cycles, Likewise, Vi_], will be + 3 for odd and * 2 for even
major cycles,. If we assume that R2i 20 where { is an integer, thenv

Ratel = Ryj - ATy *+ 34Ty, - 2N = Ryy - 24 5 24T,
and if Ro; - 2 + 2B To1,1< 0 »

Rguz =Ro; - 2M + 28Ty14 -0+ 28T51,0 = Roy + 2(Tog,o - Tgy)

If we assume the sequence of alternate inacremeimttso the general values of the

. remainders are:

Rop = 2(Tp, - T,) = 2Ty,
Ronel = 2Tpqe) - M \
Conversely, the sequence of sgn Ri will be alternate as long as sgn RZMI ﬁs
- 1 where 1<2n + 1, The smallest value of 1 for which this condition does no&
hold is found as follows: |
My, - M20
* Topep 2M _ , ;
In other words, the alternate sequence will continue until the first T on an
odd major cycle is greater or equal to M, the predetermined switching point,
Assume that switching occurs on the Nth major cyclé, le, Ty2M ’

Then Ry = 2TN-1 + ZATN -2 =0 or}

22

ENCLIRVAVE S 1

But sgn 0 = sgn 1 = + 1, The sequence sgn Ry is no longer alternate but con-

tains a + 1 for the.Nth major cycle as well as for the N-lth, Then'UN+l = 2,

The next remainder is: .

Rnoy = Ry - 24Ty, + 28Ty, - 2M = - 2Mor 1 - 2M
vN#l =1, Since 1 - 2M <0, Uyea = 1. Using these valugs

BN+2 = Ry - 2M - ATy,o ¢ ATy,o * 2M = Ry =0 or 1
Aftarf the N + 2th major cycle Uy, = 1, Vne2 = 2, and Ry,5 = 0, These are
precisely the values obtained after the Nth major cycle, In other words, the
step has become cyclic with a period of two major cydiesca The rewainder of
this step is alternately O and - 2M Cor 1 and 1 - 2M), In either case sgn Ry
will be an infinitely long alternating sequence, Therefore, this step yields
the desired gate timing pulse, This step‘is not reversible; the sequence will
remain alternating regardless of subsequent values of T,

A single gate timing step can supply timing to open and/or clese any number
of gates at some particular time, Both the initially open and the initialiy
closed gates will be considered here, - |

. The initiélly opened gate is fofned by.the following algorism:
Up = 1
Vo = 2
S=2
AQy = - ATy

]

AUy = -AV; = sgn R; in the gate timing step,
APy =0 ,
AWﬁ = sgn Ri-ﬂ

Prior to switching the Uy will be 1 on even major cyéles and 0 on odd, Vil

- will be 3 on even: major ¢ycles and 2 on odd, In every major cycle prior to

switching V5 _; - Uy =2, Substituting in equation 1 we have:

PX 56-4

1t}

Ri-l + 2AT1 - 2Awi
Rl =0 + 2AT1 -2

But sgn R} = AT,

So Rp = 24T) - 2+ 24T, - 24T = 24T, - 2
In general
R, = 2AT, - 2

and ~ sgnRy =AT,

prior to the gate switéhing. If the gate switching pulse occurs on the Nth

"ajor cycle where N is odd, the values of U and V will have the following

values in the neighborhood of the Nth major cycle,

~ Major Cycle =14 Uy V4 Vi.-l Y1 - Uy

N-3 1 2 3 2
N-2 0 3 2 2
N-1 1 "2 3 2
N 2 1 2 0
N+1 1 2 1 0
N+ 2 2_ 1 2 0

After switching:
RN = 2ATN-l -2 - 2ATN + 2ATN - 2ATN-1 = -2
RN+l=v2+‘2=0

On all subsequent major cycles AT; has no effect because Vj_j - U; = 0 and -

. . k N .
the sgn Ry will alternate, Therefore, if k2N, X sgn Ry =Ty, - T, k even
o i=1 .

= Tn-l ‘- ?0 -1k Odd. .

The initially glosed gate is formed by letting the algorism be:

24

PX 564

8Qy = - ATy
AVy = - AUy = sgn Ry in the gate timing step
AP =0 |
AW; = sgn Ry
Prior to switching both the U; and the vi-l will be 1 on even major: cyclés

and 0 on the odd, The difference Uy - V; ; = 0, Substituting in equation 1:
Ry =Rj_) ¢ UﬂA Q - vﬁ-lAQi - 2AW£

Ry_3 + 04AQ; - 2AW1=Ri_l-‘=2AWﬁ
Ry =0-2=-2
=-2+2=0

=5
[
i

RBMR =-2
- If the gate switching pulse occurs on the Nth major cycle where N is odd, the

values of U and ¥ will be the following in the neighborhood of the Nth major

cycle:
| Major cycle =1 Uy Vg Yy, Uy - Vi
N-3 1 o 1
2 0 1 0

N -
N-1 1 o0 1
N 2 1 0
Nel 1 o0 -1
Ne2 2 .1 ¢
Ry =0+ 24Qy - 2

I O - =

Sgn Ry = A QN

PL

PX 56-4

BNep = 24Qy - 2 ¢ 2AQN+1 - 2AQN = 2AQN+1 -2
and sgn Ryyy = AQN+1
Ih generai
sgn RN+j = QN+j
The function
| k
;gl sgn Ry = Q - Qy where k 2 N
whicqwi§wgpgwdesired gated function,

. (5) ERRORS IN INCREMENTAL ALGORISMS, - In performing the incremental
algorism the computer can come up with only one possible answer, Since all
the operations are digital, there is not ihefslightest ambiguity about the
answer, This answer will be the same whetﬁer the incremental algorism is per-
formed by a small, specially built computer or a large general purpose computer,
However, the function generated by the incremental computer may not cpincide
with the function for which its program was designed, The difference between
the desired answer and the answer the incremental computer will yield with a
given program is called the program error,

In any digital computer there exists round off error when a number is
handled whose significance exceeds the ability of the machine to represent the
number as an integer, For example, a ten binary digit number cah represent any
integer from one to 1024, If ten binary digits are used to reptesent numbersk
from0,01 to 10,24, the number 7,8382 would have to be rounded off to 7.84 with
a round off error of 0,0018 or 0,01,

In an incremental computer the round off error is usually no more than plus
or minus one increment on input quantities and slightly more on output quanti-
ties, assuming that the computer can keepnub with their changes, In order to

keep up with the changes in the variables, the increments must be at least as

26

PX 56-4

large as the maximum changes of the variables that can occur in one hajor cycle,
For éxample, the error of a variable input or output due to round off is about
equal to the maximum change the variable can make ih 0,005 seconds in the case
of real time application, In many application§ this amount of error is small,
Round off error in an incremental computer corresponds to the erfor made in
aax analog computer due to the difference between the analog representation of
a number and the number itself, To decrease the round off error by a factor
of two in an analog machine may be a very difficult engineering operation, To
decrease the round off error by a factor of two in an incremental computer not
used for real time control, one more binary digit is required for the numbers
and twice as much time is required for the computation,
The round-off error for the outputs frsm additioh, subtraction, multiplic&-'
tion, and integration steps is equal to the term g; This term is usually less
than one, but it can be as high as threevevén when the numerical process has

"settled”, In order to keep the fractional error small in addition, subtrac-

-tion, multiplication and integration, tﬁe answer should be kept large as com-

pared to the poséible error, That is, the magnitude of the quantities

uQ + VT :
—Qg—g——g—_+ P for addition and subtraction, g! + P for multiplication, and

%(fUdT for integration must be kept as large as is consistent with the require-
ment that the change in the quantity shall not exceed one in one major cycle,

The only quantity which may be adjusted to accomplish this is the scale factor,
Therefore, to minimizevround-off error in addition, subtraction, multiplicatioh

and integration, S should be just large enoughkthat the arithmetic process can

keep up with the changes that can occur, In division and differentiation the

Quantimies to be kept large are: §iﬂv=-gl and Sg%, In these cases S should be
made as large as the requirement that the step must keep'up will allow, Round-

off is the only error that occurs in addition, SubtraCtiono multipiication and

21

PX 56-4

division, The round-off term is not discarded-as in normal round-off, but is

retained, preventing the error from accumulating, ‘The error in the answer is

due only to the final rounding off, ff the independent variables are returned

to their initialzvalues, the dependent variable will return to its initial

 value,

Round-off error is not the only error that occurs in incremental integra-

tion and arithmetic processes which use integration, ~ More accurately, integra-

tion accumulates the round-off error which may grow’systematically or statisti-

cally, The integrated round-off error is called drift, To investigate drift,

consider the polygonal function:

Then

F(T) = F(Ty) + (T - T)) [F(Ti + ATj4y) - Fm)j

ATy4)
~ for TiSTSTi‘O‘l if AT1+1 =+ 1
T42T 2Ty 4 . if ATX*] =.]

and T, ., =T; + ATy,

Ty Ty ¢ | F(T)) - F(T.)
Tof FT)ar = Tof R A

T Ta - Ty

F(T,) -
P T, [(T,) F(TH_I)}}M

Ty - Ty} .
F(T) - F(Ty)] [12 [T1
= F(Ty) (T) - T,) + T [-5- - ‘1"1‘0] * ...
! l = 2 : To
F(T) - F(T, | [+2" Ty
+ F(T, (T, - T,) 0[;n T ;-1 J [T - TTn_l]

Tn-L

(60) -

. c[Ty {F(TI)‘f {T - Ti]EF(T2) - F%Tl)j}dT L] f[Tn {F(Tn,1)
N -

28

PX 56-4

Equation 64 is accurate except for the round-off error

2 2
(m)r?- 'TITO*T2]¢
= F(1)(Ty - To) + [FaTp - .°]_‘T1-To ol AR
o 2 2
» [Tn Tp.1]
9~ - Tplpoy ¢
s BT, (T, - T,) * [Faap - Far, p] S8 11 _nz:
, n n-
| | C[rap -Fay]
* F(T)(T) - Tg) + (T - To)[e

<

T, - T)
(T - Tpp) F(T,) ¢ 2= 2=dlr(ry - Fer,)

2
- 1) - 19 {F(Tl) ;F(To)] G Ty Ty [F(TL,) ;F%-l)]
3 F(Ty) + F(T3_1)
=3 i 5 i-1 ATy
i=1
That is:
T F(T;) + F(T | R
S " rmar = 3 I FOL) AT, (61)
2 .
T, 1=1 | |

This form is suggestive of the incremental integration formula, equation 39,

Substituting equation 61 into equatioh 39,

Wy - W, =

17, [%]

T R
f " udr - . (62)
T, , |

If U is the polygonal function:

U(Ty{ 4+ 1) - U(Ty) :
U(T) = U(T;) + (T - Ty) : (63)
i - i [ATy, o
for TiSTST“l‘ if ATy, =+ 1
T,2T2T;,; if 8Ty =-1
R
If the process has settled in n major cycles, Sﬂ can be neglected and
T
2 n ;
Wy - Wom 2 [o | | . (60)

To

=

o 1
S
function defined by equation 63, In many applications, however, the function

for the polygonal

PX 56-4

to be integrated is not of this form, Let the function to be integrated be

G(T), Let the changes of G from one major cycle to the next have a magnitude

_no greatér than one, The polygonal function U(T) can be made to approximate

G(T) within one increment, Define this difference as:
S(T) = U(T) - G(T) : _ (65)

S(T) is the input round-off error,

T T ' T :
men: 2 ["emar=2 ["uvma+2 [" smar (66)
5.7 5. a
[¢] 0 0

The term % an S(T)dT represents the error that would be caused by the approxi-
To
T,
[" smar| s

mation G(T) ® U(T), Since lS(T)i
To

n, Moreover, the

actual error is usually mugh less than n because the average value of S(T) is
approximately one-half in most cases instead bf one, and the sign of S(T) tends
to alternate, If one assumes that this error accumulated statistically and
that the probable error for the round off error for one major cycle is o , then

the probable error for n major cycles is ovh, Since the probable error o

' T
i
is the probable error of the term % j‘ + S(T)dT, its value for most appli-

Ty
cations is about 0,0005, Under these circumstances an accumulated probable
error will be equal to one 1ncrement in 4 000,000 major cycles (5,6 hours of

computer operation),

To show that T is not a single valued function of W, it is sufficient to

~ show that for two different major cycles with the same value of W there are

gifferent values for T, Consider a seduence of AW's such that they are + 1

until W, is reached, and are - 1 immediately thereafter, In this case

L] [] L °

AWy, =1, AW,y = -1, Then Wpep = W

n-1 + Awn + Awml = wn_l, Without loss

of generality assume that

30

FA D0-4

O0<Rp_2<S + 2, ' (67)

Assuming that W is positive for this problem, equation 57

ATi,; = - sgn W sgn Ry ' (57
indicates that &T, | = - 1, Substituting in equation 41
Ry.y =Ry o+ Oy + Wy) ATy - SAW,
=R, o - W, 9 -1-5<0
Therefore,
AT, =+ 1,

Then Rn = Rn-l + (Wn + Wn_l) ATn - SAWn
=Rn_2 -2Wn_.2 -1 -S+2Wn_2+3 - S

Ry = Rpg + 2 - 25<0

Therefore,
Then Tp+l = Tpol + ATy ¢+ ATpe) =Tp) + 2 # Ty

Although Wy, =W, y, Ty # Tp_). T is not a single valued function of W,
Therefore, the drift in the logarithm is not reversible,
(6) SUMMARY, - The algorisms of addition, subtraction, multiplication,

and division are subject only to round-off error, These errors are small, e,q,,

with full scale numbers equal to 1000 the round-off error is about 0,1 percent,

The algorisms involving integration are subject to drift as well as round-off
errors, Drift is either reversible or irreversible and it is either systematic

or random, ({Actually, there are no random processes in an incremental computer,

"By random is meant that which cannot be predicted analytically from the dif-

ference equations describing the process,) The random drift is very small and
can usually be neglected, The systematic drift can be anticipated analytically,
and perhaps eliminated by a suitable modification of the algorism, Reversible

drift occurs whem a single valued function is integrated, Such drift is zero

al

PX 56-4

when the independent variable is returned to its initial value, The algbf!sm
for differentiation is unstable, but can be used with suitable feedback,

| By using the smallest value of a scale factor that allows the step to keep
up in the algorisms for addition, subtraction, multiplication, and integratipn
and the largest scale factor.for division and differentiation, the round-off
errérs can be kept to a minimum,

f, APPLICATIONS OF THE INCREMENTAL TECHNIQUES USING SEVERAL STEPS, - In
the following discussion the steps for the variables are indicated by a super-
script, As before, the number of the major cycle is indicated by a subscript,
Independent variables will be indicated by letters without superscripts,

(1) FILTERS, - A single RC low pass filter satisfies the following
differential equation: |
ej - eg = RC %%9
T
or . RCe, =xf (ej - eddt , (68)
By using a single integration step with two simultaneous point slope (or Euler)

integrations, a single stage RC filter represented by equation 68 can be

realized, The algorism for this step is:

Uo = (ej)o AUik = (Aej)i
AQiz-AT1=+l Apif—:O

VO =0 AVi = Awi = sgn Ri—l
S=RC + 2

. This algorism corresponds to the integral equations

tnﬁ%— tn-%
f ejdr -f e,d = (RC + 2)e,
or j e;d - f e,d = RCeqy (69)

32

PX 56-4

which is the filter differen;iai equatién 68, Therefore, when equation 69 is
satisfiéd Wi(l),is very nearly eq, These filters can be cascaded to give.rather
sharp attenuation, By cascading five éections, the mathematics simulates five
electricél RC filters cascaded with unity gain isolation amplifﬁerskbetween sec-

tions, The circuit would look like:

]
T T

e o

T
s

This program was run numerically on’a simulation routine in an 1103 large scale’

‘computer to obtain the frequency response of the sysfem and the five outputs

agreed in amplitude and phase shift with that expected from filter theory,
| (2) POLYNOMIAL, - Since multiplication can be performed in a sinﬁle

step, a quadratic can befformed in one step, If it is desired to form Ax® ¢ Bx

+ C, form the product

' Wp - W, = Ax(x + %) and let W, = C,

‘Then wn is the desired quadratic, In specific incremental notation let

- - B - — . — - -
Uo = xog vo = xO + A’ Api = 0, AUi = Avi = ATi = AQi = Axi° and Awi*l =

signum Ry, Then U =x, V=x + %, and
x(x + %)
W, - Wy = ~= when the step has settled down,
The scale factor, S, is chosen as a compromise as indicated by the following

aiscussion, -For the proper choice of the initial value wo,'wn is proportional

to the desired quadratic, A cubic can be generated in two steps, Probably the

3 2

simplest way of generating the cubic Ax“ + Bx” + Cx + D is to generate the

33

PX 56-4

quadratic Ax2 + Bx + C in one step, and multiply it by x and add D in the sec-
ond step, A more general way is to factor the cubic into

| (x + a) {Ax2 + (B - al)x + (C + aA - Ba)} + b - adA +a% - ac (70)
The quadratic indicated is generated in the first step and the quadratic is
multiplied by x + a and the constant term is added to it in the second step,
Factoring the quadratic in this manner is helpful because the usual limitation
on the accuracy of such a computation is due to the scaling of the quadratic
which is necessary in the first step to allow the step to keep up with changes
that occur in the independent variable, This rate of change is given by:

%E{sz + (B - ah)x + (C + aA - Ba)} = (24x + B - an)|dX (71)

where Ig%l is the maximum absolute value of the rate of change of x at this
value of x, The constant "a" is chosen sﬁch that the maximum rate at which the
quadratic can change at all values of x is as small as possible, If ‘g%' is
constant throughout the range of x, equation 71 is linear in x and a = % + Xpin

+ For any choice of a, if the scale factor S is equal to the maximum

" Xmaxe
rate of change of the quadratic, the quadratic will keep up with the changes
of x throughout its range, For this choice of a, the quadratic will keep up
with the minimum of round-off error, 1In the case of a constant ‘g%l, |

S = Alxpax - Xpiy) l%% .

Quartics and higher degree polynomials can be generated as well, In gene-

ral a polynomial of a degree n can be generated in n-1 steps, Variation in the

details of generation can be made allowing the programmer some flexibility in

~adapting the computer te a particular polynomial, For example, a sixth degree

polynomial can be formed by the product of two cubics, the product of a quartic
and a quadratic, the product of three quadratics, or the five steps can produce
the sequence of quédratic, cubjc, quartic, fifth degree, and sixth degree, One

of these systems would be the best for a given sixth degree polynomial, The

M

PX 56-4

best system would be the one which can keep up with the change in the indepen-

| dent variable with the minimum of error in the polynomial caused by round-off

of all the steps, To obtain the various constants required for the optimum sys-
tem, criteria of the type suggested for the cubic should be used, These cri-
teria are too complicated fo be included in a paper of this scope,

(3) SINE AND COSINE. - The differential equétlon g—i-)zl + aizy =0 (72)
defines the trigonometric sine and cosine, This equation can be solved by the
incremental computer either through the use of the differentiation routine or
through the integration routine, Inasmuch as differentiation requires that the
independent variable increments always have the same sign, integration is the

more useful, Integrating equation 72 twice we have:

yoo =-w2 [a{ [anym 2C)} +c, (13)
0 0 .

The general solution to either equation 72 or equation 73 is:
y=Acos Wx +B sin wx _ E (74)

If we wish to find the cos wx, the initial conditions are y{o) = A, Then
y = A cos wx, The first integration of A cos wx yields A sin wx, The secgnd
integration yields -A cos wx, The sum of A cos wx and -A cos w x should equal
0. The sign of the sum of the two calcqléied terms determines the sign of the
correction to be applied to A cos wx,

The sine and cosine can be generated by the direct application of two\steps

of integration, This algorism is:

ap, D = ap,@ oo | (15)
a1y = 80, W = a1, @ = _aq® = Ay | (76)
Uo(l) = Vo(l) = A cos WX, | (17D
0,9 =¥, = asinwx, v 1 8
au, D av, D = aw @ < g @ W

35

PX 56-4

(2)

auyt® = Ay ? - (1

= AWy, = sgn Ry 80

s(D = 5@ -2, 50 | | (81)
Onc incremental change in x represents an angular change of % radians, With

this algorism the sine and cosine are generated very well under favorable cir-

J
I'4

cumstances, This program was tried with several values of A and S to hcheck on

~its usefulness, For example, it was found that with A = 1000 and S = 2000,

that after 6,283 cycles representing 2 7 radians of angular chénge, the error
in thé function A cos 2 7 was between two and three increments, about 0.25 per-
cent, | |

If ,for some reason,it is known :that the angle for\: which the sine and/or
cosine is needed is limited by the pfoblem, it is advantaygeous to 'changé the
scale factors so that they ‘are no longer equal and are just small enough to
allow both steps of the algorism to keep up with the change of t"he independent
variable, If, for example, it is known that -20° <'w x £ + 20°, we know that

.‘ g;cvos wvxl = stin wx |[sw °© 342

If W = 0,001, we can generate 2924 cos w x in the second step instead of 1000

cok(u X by letti;g‘the scale.factor in the second step be 684 instead of 2000
and the scale fa;tor in the first step be 5848 instead of 2000, The variable
1000 sin wx is computed in the first step just as befére, Bj adjusting these -
scale factors the'roundiﬁg off error is reduced for the cosine in this applica-
tion causing less final error in both the sine and cosine,

By looking more closely at the difference equation actuélly solved by the
algofism, the source of this small error can be found, Notice that in equ#tion

@ -
i

79, A Ui”‘) = Avi(l) = sgn Ry "1, In this case there is a lag, i.e,,

4 COS W X§_o *+ €OS W Xj_
b; sin wx = 1)2_8. ilei

36

PX 56-4

sin wx; 1 + sin w xj
S

whereas A { cos wx = Axy.

| The latter represents trapezoidal integration, The difference equation actually

being solved is:¢

: k k-1 ' ‘
i-1 El REIBIIE El [v5 + vy a1 |
- = - = = AT, (82)
¥i yo kEI 52 k
“which corresponds to the integral equation:
x-1 T :
y(x) = —w? f dt f dny(n) +Cyf +Cy (83)
0 0
or to the differential equation:
T |
¥ 4w 2yx-1 =0 (84)
dx? .
Expanding equation 84 in a Taylor's series,
2 42 2 3 ' ’
S¢ d¢éy dy() , 1d%(x) _1d%(x) | =0 (85)

g2t Y TR 2T e T g3 e
This series is strongly convergent, An extremely small error is made by round-

ing off equation 85 to:

2 g ! '
%y+y-y+%:0 , (86)

Equation 86 has the general solution:

2x) '
2 VA WV
y{x) = e> *2 | A sin 2 8741 o 4 cos 2___§E:l P 87
2 + 82 2+ 82

In the usual case, S is of the order of 1000, With such an S, it is justified

~to approximate the solution by:

X

S 2

‘y(x) = e [A sin % x +B cos'g x] . (88)
Equation 88 represents the solution to the difference equation 82 actually bec
ing solved by the algorism of equations 75 through equation 81, For many appli-

cations this solution is close enough to the sine and cosine to be used, In

37

PX 56-4

particular, in the usual case where the independent variable changes relatively

sldwly, the scale factor can be made large, and the exponential multiplier in

‘equation 88 changes from one slowly, In the cases where S cannot be made large

and the computation is to be carried on for a number of seconds, this algorism

‘prbduces considerable error,

For a numerical check an incremental algorism of this kind was computed on
an 1103 lérge scale digital computer, All of the steps were performed to simu-
late the incremental operation, The initial values were A = 150, B =0, and
Xo = 0, In order to show how the algorism would differ from the .sine in a rea-
sonable number of cycles, a small scale factor was required, The scale factor
was 406, After 23,562 major cycles (corresponding to two minutes of incremental

computer running time), y was found to be‘-200,9. From equation 88,
24 23,562

B St~

e 160,000 , 150 - (-0,9987) = -201,1; in vefy good agreement, In this case,
after-a long time (two minutes), and under poor conditions (small S.and no
changes in AT), a 35 percent error was produced, Compare this result with the
more realistic result above,

In the derivétion of d#fference equation 82 it was assumed that AT was ¢ 1,
Since x is an independent variable, it is conceivable that AT can be both
signs, During each major cycle that AT is different from the previous major
cycle, the difference equation 82 does not apply, and there is no drift,
Definings |

N = no, of major cycles,
n= no, of chénges in T,
the equation 88 becomes:
2(N-gl

2

S 2

y{x) =e [A sin % x +B cos § x] | (89)

PX 56-4

The variable n éan be large when x is varying slowly causing the changes in x
to be alternately plus and minus one,

It is possible to alter the algorism to generate the trigonometric func-
tions more accurately,

In some applications x is monotonic, that is, AT = Ax = + 1 for every
major cycle, Such would be the case, for example, if a sine function of a cer-
tain frequency (relaiive to the speed of the drum) were desired, The sine-
cosine algorism for monotonic independent variable can be formed by modifying
the algorism to read:

(1 . 2) _ - _
ATy = AT = ap (D) 2 AP (D) = 0

i

80; M = a0 = ax; =+ 1
0,V

= A cos wX,
U{? =4 sin wolxy +) + 1
st _ 5(2) 25_21\

AUi(l) = AW (2) - sgn R(2)
AUi(z) = fli = sgn Rl(l) !

This modified algorism, using point slope instead of trapezoidal integration,

corresponds to the incremental equation:

- (2) -
0. _ WU TAxy ol Ay ,
" izo (@ iz0 s(2 j5o s)

n-1 i
Un(l) = _w? 5T UJU)

- In general y(t*—) - y(t_—) = y(t) + —y(t) + %y + lJ” —l—"

48 384y secsee

u "

(v) *-l-’(t) +-l”(t) S
- y . 2y 8y - Z_gy (384y +: ceoo.

..).'..{“ 1 v
y(t) = 24y 1930y + ©ees e

PX 56-4

0 = yaed - yad LY e e

b b
I _ 1 1 1.1 Vv :

or épproXimately

’ 1 1 | 1 |

b b+ b+s b+3 y

2 y'@) = [2 y'(riydr - L f 2 ydr - -1 [b2 yd? + ..,
g= b 4 .1 1920 , 1
N 2 | 2 2

1 N . n " .
f b+-2- . y (b+-%) -y (a-él Y (b+ é) - y"' (bt%_)

= y (7T)d7r - B - - " ¥ osenes

ad 24 1920
Then :

1) 5)
U = U T dr -w "w ""’*o-oo +C° Sto

jE] 2l () 24 " 1920 "
.on-l i n-1+1 n 47

2 () - ,2 . _wd U _ wiy
w | E:o j§ U,j. W _{ dn :{ drU(7) - w 34 ~ 1930 +,..+ Const,
That is, " R

- tn t n
dt dTU - w4U (1) = eeee
-Un(l) = ‘w2 f ,of " " ‘
. 0

Differentiating twice
(- Un(l) + w2 Un('l) =0

2

l -w

or (1 (1)

S R rr L

_ 2 w?2 .

Let — Q%=-—"qp : - 90)

Substituting in equation 90

y"(x), + 02 y(x) =0 9D

40

PR 20-4

This differentiél,equation is of the form of equation 72, Equation 91 has the
general solution y(x) =A sin Qx +B cos §x, The approximations necessary
to derive equation 91 from the integral equation describing the effect of the

modified algorism are much less severe than those necessary for the unmodified .

. algorism, The modified algorism is much more accurate than the nnmodifﬁedoj

virtually eliminating the exponential térm of equation 88 found for the unmodi- |
fied algorismB. The only other errors of thié algorism aré the accumulation of
the inteéral'of the difference between the sine and coéine*functions and their
polygonal representations and the final round-off error, It must be remembered,
however, that this modified algorism is most accurate when the independent
variable is monotonic, With nonfmonotone vériables, this method is more accu-
rate than the method using trapezoidal 1n£egrat10n, |
To demonstrate these methods, simulations were carried out, In the case of
é honotone variable, the two ﬁethods were used to generate 120 sinw t, The
Simulations were carried out for 13,000 major cycles (65 seconds of real time'_

and 13 complete 360° rotations of the input angle), Here again the scale factor

 was chosen low in order to show the errors in a bad case, The results wére;

the first method (trapezoidal integration) yielded 157,4 and the second method
(point slope integration) yielded 120,38, Their relative erroréJwere 31 percent
and 0.3 percent in this extreme case, |

A second simulation was done where the input variable was a sinusoidal fune-

‘tion of time instead of monotone, The errors made by the second method were

. @bout one-third that of the first,

In any of the systems discussed, if w is very large, S must be made small
in mhe'ﬁntegxation steps and the amplitude, A, will have to be small, This com-
bination tends to yield more drift due to the differences between the desired

trigonometric function and its polygonal representation, Both of these systems

PX 56-4

are subject to this drift to the same extent, Since polynomials are not sub-

Jject to drift error, a polynomial approximation to the sine or cosine can be

'made which will give sufficient accuracy with final round off being thg_pnly

‘computation error, If the independent variable is restricted to a suitable
range, e,g,, -mTSw X = +7 , the approximation can be made directly by .
Legendre or Tchebycheff polynomials, If, pn the other ﬁand, the independent -
variable has an extended range, the polynomiél should be chosen to approximate
the trigonometric function from :5"__ <0 < _.%r_' and let § = wx + 2nw
where n is a positive or negative integer, The polynomial approximation to
the Sine:

Csinx M ,986x - ,143x3

2 []

' - m
is in error no more than 0,006 at any value of x between —;L and £—, This
cubic approximation should be close enough for those cases where the use of

the polynomial is called for, In the extreme case, where a very accurate sine

is needed after a very large number of major cyéles, it may be necessary to use

~a fifth degree approximation,

(4) CONCLUSION, - To generéte the sine and cosine, the simplest and
generally most useful method is to use two steps for double integration, This
method lends itself to a wide range of applications, In some cases this method
may lead to a drift error that is excessive,

A second method has been devised which greatly reduces this drift error in

those cases where the independent variable is monotone, In every case of a

_monotonic independent variable this method should be used since it, too, re-

quires only two steps of integration, but yields greater accuracy than the
first method,
In some cases, generation of the sine and cosine by double integration may

not be satisfactory, Suitable approximations can be made with polynomials

42

PX 56-4.

either with one polynomial for the whole range or with a polynomial approxima-

:) T
tion from -%L to 35— repeated over the entire range,

v T

43

PX 56-4

2, PROGRAMMING THE INCREMENTAL COMPUTER

a, INTRODUCTION, - This section is concerned with the preparation of a
problem for computation on an incremental computer, This preparation may be
arbitrarily divided into a series of interrelated operations, It is assumed
that, as iS usually the case, the problem is to generate some output variable,
which is a function of the input variables, The first step is to determine a
series of operétions which will generate the desired function, This procedure
is known as "programming”, The selection of the proper operations and inter-
mediate functions is subject to .various criteria to be discussed below, Further
the optimum sequence of operations must be determined,

The second step is to determine coefficients for each of the intermediate
functions, a procedure known as "scaling",\ The scaling of a function determines
the precision to which it is‘known in the computer and also the rate at which
the computer quantity can vary, The accuracy of the output function is quite
dependent upon this scaling operation,’ As the incremental computer computes a
function relative to its initial value, the initial values of all the functions

must be computed and the appropriate quantities inserted in each register, 1In

AcaSes where the inputs start out at values different from the initial values in

the computer, it takes a period of time for the functions in the computer to
equate themselves with the inputs, This period, known as "settling time" is
kept to a minimum by proper choice of initial values,

The various steps listed separately above are actually interrelated, In

. practice this means that the changes in one step affect the others so that it

is often necessary to iterate the steps,
Finally, the operations must be coded for the computer, and the :input: tapes"

must be cut,

44

PX 56-4

b, DEFINITIONS, ~.At this point some of the terms common to this work will
be defined, |
| Coeffigién - This is a constant, which a.functﬂom is,Mgltﬁplﬁed~byb in the
computér, A function x is represented by Cx increments in the compﬁtero

where Cy is the coefficient of the function,

A direct operation is defined as one in which AW {is the dependent variable,

An inverse operation is one in which AW is an independent variable,

The gg⋙ ér result of step, refers to either the sign of the remainder of
the step or else the dependént variable generated by the step and defimed
by_the equation | |

n
Fp=F, + 2 sgn Ry
i=}

Overloading- A step is said to be overloaded if the output function changes
more rapidly than one increment per cycle, This condition is characterized
by large values on. the R-line, It is the opposite of keeping up, |

Sgaling is the operation of determining scale factors (and/or'coeffﬁcﬁents) for

the steps of a program,

Scaling down is to decrease the coefficient of the output of a step, scaling up
to increase it, |
Settling - Immediately after a computation has started; many steps and inmputs
| will be overloaded, When no more steps or inputs are overloaded, they are

all settled, The settling time is the time from the start of a COmputation

until éll's&eps and inputs are settled, _
Flipping é step is to reverse the sign of its dependent variable,
¢, PROGRAMMING. . | '
(1) CHOICE bF FUNCTIONS. - In preparing a problem for an incremental

computer the first operation is to write the program, This consists of a

FA 20-4

sequencé of intermediate functions which bridge the gap from the input functions
to the output functions, In order to obtain the greatest possible accuracy in

the cutput, it is necessary to choose terms of the sequence which introduce a

“minimum amount of error, and, also, to arrange them in an optimum order,

In choosing a set of intermediate functions, it is desirable to select

functions which fall in the general category of analytically "wellfbehaved"

functions; that is to say that they should be continuous and reasonably bounded,

Furthermore, they should be relatively insensitive to absolute error and should

“tend to minimize its propogation, For example, the relative error in the dif-

ference between two almost equal terms is quite sensitive to variations in
either one of them, Or, to cite another case, the square root of a function
Becomes highly sensitive to absolute erro; in the function as it approaches
zero, |

In addition to the restrictions placed on the function from the general
standpoint of error, the incremental computer itself has properties which |
should be taken into account, Due to the representation of a function which
is used in the computer, absolute rather than relative error becomes the most
applicable type, In the many cases where a certain relative error is aimed
for it is usually desirable to select functions with as limited a range as
possible so that the two types of error may be as similar as possible, This

limiting of range serves other useful functions as well, for as the maximum

‘rate of change of any computer variable is one increment per cycle, a limited

range allows a much greater total number of increments to be used to represent
the function, other things being equal, for the same settling time,v Scaling of
a restricted function is usually more satisfactory as wide ranges tend to allow

scaling to be too high at one end and too low at the other, This restriction

of functions applies not only to the functions themselves but to their rates as

46

PX 56-4

well, Here, even more‘clearlyc»the‘accuracy with~wh1ch_a‘function may he,repreéi
éented is in%ersely proportional to its maximum rate, This may be seenafrqm.
the fact that the round-off error and the maximum raie are both proportional. to
increment size, | ' |

~ The principles which make inverse palirs, e,g.,.multiplication\and di&msipmq
so easily obtainable in the incremental computer also méke it possible to set.
up lérgerﬁioopé by which impliclt functions may be computed, Larger loops, how:
ever, are noﬁ as :foolproef ahd may become unstable, elther oscillating or else
changing as rapidly as possible to some value other than the desired 6ne,
| Thg fact that the incrementallcomputer is rate-limited becbmes‘quite 1mpof-
tant when deaiing with loops, This limiting may restrict changesviﬁ such a
manner so as to diminish overshoot, On tﬂe other hand, there have been cases
where it limited negative feedback so as to allow instability, 1In general, how-

ever, the usual analytical methods developed for feedback loops should apply to

. “incremental loops as well,

Once a sequence has been selected, the nmext step is to determine incremental
methods for generating it, In addition to the specified operations this genera-
tion may involve such techniques as polynomial approximation and double integra-
tion for sine and'cosine.

On long programs, especially, it is desirable to pack as much on to the drum

as possible, This means performing as many operations in each step as possible,

Thdugh usually only one operation can be performed at a time, there are a few

__cases where two or more operations can be done at once, One of the most obvious

cases of this is the use of the P-input, By using it, a term may be added ::
at the same-time gnother operations is being performed, The chief limitation
to the P-input is that it must be scaled the same as W, This usually is not a

serious problem, Where it is, however, it may be necessary to use a separate

47

PX 56-4

addition step, Luckily, addition steps usually have short word lengths so that
they are not as costly space-wise as most other stepS; In some cases addition
can be accomplished using only the Q- and P-inputs, thus leaving the V-line
available for comparisons, As a final remark it might be mentioned that repeti-
tion should be kept to a minimum with no functfon'being generated more than

once if at all possible, It should be pointed out that it is less costly as a
rule to add in a function already gjenerated than to regenerate it,'

(2) SEQUENCING., - After the programmer has determined the set of func-
tions to be used, the next step is to arrange them in the best possible sequence,
In this operation the programmer aims ‘1) to have minimum lag between input and
output; i,e,, minimum computation time, and :2) to efficiently utilize the RAM
(random access memory) so as to have adeqﬁate memory positions available,

In the present computer, due fo»il) the fact that the reéult of a computa-
tion is not stored until the step following, and %2) the fact that the incre- .
ments must be read in the étep preceding the computation, a result computed in
cycle n cannot be used until cycle n + 2, In arranging the sequence of steps,
to obtain the minimum computation lag, mathematically consecutive operations
should thﬁrefore fall on alternate cycles, The (n + 1)th cycle would use the
result of the previdus?major cycle, thus causing a majorvcycle delay,

The simplest means of spacing the operations as described above is the 2-
interlace, Wit. the 2-interlace, consecutive operations are written in altér-

nate drum positions with the first half of the program occupying, say, the even

numbered positions and the second half occupying the odd-numbered positioas,

With fhis arrangement there is a twobdrﬁm.revolution delay between the beginning
and end of the program, though all of the quantities are computed twice within
this period, (In the first revolution the first half of the program is com-

puted, In the second revolution the results of the first half are used as a

48

PX 56-4

basis for the computations of the second half while the first half is being si-

multaneously recomputed,) The effect of the two-interlace is to reduce the

computation delay from one cycle per sfep to two cycles over-all, It has‘the",

‘advantage of being simplélto use with a program written out in consecutive

fashion, It is poésible, however, to reduqe the delay still further’in many. /
cases, It often happens that there are sequences of operations which can tgke
place simultaneously, It is possibie to intérlace these sequencés so that both’
are.performed in tﬁe same time it would take for one using the overall two-
interlace mentioned.above, -It is often possible'to divide the steps in a pro-
gram into two éategories: those,rapidly varying and those slowly varying, If
the rapidly varying functions are placed on alternate steps, tand the slowly_
varying functions placed in betweeh;vthe result is essentially a one-cycle time
delay,

To obtain the shortest ‘possible time delay it is usually necessary to use
a combination of the above methods,;because a method as simple as the" two-
interlace will reduce delay to two cycles (for a completely consecutive program),
mofe elaborate techniques may often be unnecessary, In some cases itbis possi-
ble to further compensate for delay by extrapolating ahead a period equal to
the delay, A one-cyﬁle delay occﬁrs when an input is operated upon during the
same cycle in which it is taken in, This is due to the fact that the incremenﬁs
for an operation are drawn from the RAM in the step preceding and that the re-

sults of a comparison are not available until the cyclé following, To obtain

. the shortest possible input delay, the input should be first used during the

second step after the comparison,

Generally speaking, one RAM position is needed fbr each step and for each

. input, As the number of cores is limited (in this computer to 64), RAM cap&city

becomes a limiting factor in long programs; To expand thé capacity of the

49

PX 56-4

computer in this respect, a second head was installed on the R-line to allow
the following command:

Wi =+ sgn Ry

- This enables the programmer in many cases to obtain AW without réferencing the

RAM, Without this command most memory positions would ::be always occupied .

since sgn R formed by a step is needed as AW in the step on the hext revolu-
tion, With it the position usually need be 6ccupied only until the last other -
step calling for sgn R, As in a typical program sgn R may be usedronly during
a few steps immediately following the step in which it is generated, the same
core may be used to store several Qalues of sgn R in the course of a revolution;
one af£er the other, In long programs, the programmer may have to sequence the
steps so.as to make maximum use of this féature. In most cases, howevef, it
would appear the capécity of the kAM is adequate so that no special rearfange-
ment is necessary, In a typical problem that uses the entire drum capacity,
about half of the RAM is needed, | .

d, SCALING, - The aim of the scaling operation is to generate the sequence
of functions selected in the programming operation, with the minimum 6f error,
There are two principal sources of error to be dealt with: 1) round-off error
and ‘2) overloading érror,v The férmer is due to the fact that a function cannot
be expressed any more accurately, on the average, than to the nearest whole in-
crement; while the latter is due to the error which is introduced when a func-

tion changes more rapidly than one increment per cycle so that the step gene;at-

4ihg it cannot keep up,

Unfortunately, these two errors are related in such a way that to reduce

one usually increases the othet, When a step is scaled up, which is the bnly

‘way to decrease round-off error for the step, then the maximum rate of the out-

put of the step is decreased so that ove;loading becomes more likely, Similarly,

50

PX 56-4

scaling down a step to decrease the likelihood of overloading increases the
round-off error for the step, The two types of error are different in nature;

whereas round-off error occurs allythe'time,'overloading occurs only in certain

-cases, for example, during settling, or when a variable is changing at a high

rate, Thus,it is a case of comparing an error which is aiways present_with,the
probability of another error being present, In cases where scaling is“critical,
a compromise normally has to be made,

In scaling programs where the problem is completely defined and the values
of the functions throughout.the computation are always known, a straight analy-
tical'approachhmay be used, scalihg the steps so that the rate of their output
is never greater than one increment per cycle unless overloading is deliberately
allowed to occur on occasion for the sake‘of reducing round-off error,

In actual practice, however, it usually happens that the system is not com-
pletely known; with only general information on the fﬁnctions being available,
Two examples of this would be: 1) where the inputs can vary over wide ranges
and are different each time, and 2) where the system is so complex that involved
analysis makes scaling exceedingly time-consuming. One solution to these prob-
lems lies in simulatién, or in trial computation, whereby a repreéentative set
of examples can be run with tentafive scaling and the final scaling based on
these, A second approach to these problems involves the use of approximations
by which the analysis can be simplified, An example of such procedures is coh-
servative scaling,

(1) CONSERVATIVE SCALING, - The ideal case of scaling is when all func-
tions are always varying at the rate of one increment per cycle without any
steps ever overloading,’ As the rate of a function in an actual case normally
varies, a function usually varie; at less'fhan one increment per cycle on some

occasions and at more than this rate (i,e,, overloads the step) on others,

51

PX 56-4

Though round-off'erfor is.less than one increment, overloading may cause an
error of many increments, it might seem desirable, therefore, to scale a step
so that it will never overload under ahy conditions, This is known as ‘conserva-
tive scaliﬁé, It has the advantage of being : relatively easy to do, and, pro-
vided the round-off error is tolerable, yields satisfactory results, It has
the additional advantage of providing the shortest possible settling time for a
given input to a step, The assumption for conservative scaling is that the iﬁ--
putito each step can vary at the maximum pbssible rate, i,e,, one increment per
cycle, and in the direction causing greatest output rate, For this method of
scaling, the rénges of the functions need to be’known;

Conservative scaling usually applies to steps where the A P-input is not
used, In all direct operations the assumbtion that P can vary at one increment
per cycle automatically means that W must be able to vary at the same rate,
without even considering the effect of the other inputs; The A P-input, thefe-

fore, will be assumed zero in the analysis of the individual operations which

- follow,, *

Addition
SAW; 2 UAQ; + VAT
5 20| + vl

‘Multiplication

SAW ; UIA Vi + Vi-l AUi
$2 |U|nax * || nax
Integration
SAWZ U;AT +U; AT
>
s2 2|U|mx
Division
V;.1405 2 U Avi + SAWi

®S will be considered as positive unless otherwise stated,

52

PX 56-4

lvlmin 2 'Ulmax +$5
: lSI < Ivlmin i IUImax
Note that for division the minimum value of V is the limiting factor, It is -
possible to have cases where no S exists whiéh will satisfy the equation,
Square Root
20AU 2 SAwW
S

A

2‘Ulmin

Exponential
ZUATé SAW

S 2 2lU|max

Logarithm
2UAT 2 SAW
S é» 2|U|min

In conservative scaling the assumption is made that all functions vary at
their maximum rate (i,e,, one incremeﬁt per cycle), Though this may often be
the case during the settling period, during other times functions are usually
changing at some rate less than maximum, and often this rate has some definite
limit below one increment per cycle, To give improved scali&g, a higher order
method has been evolved, This modification assigns to each function an e (effi-
ciency) factor defined as its maximum rate in increments per cycle, Scale fac-
tors are then calculated as above with the exception that appropriate terms are
multiplied by their e-factors,

With this type of scaling the effect of settling time becomes more impor-
tant, As was mentioned above, in conservative scaling a step will settle as
fast as the inputs to it, In a completely conservatively scaled program, for
example, the program will have settled as soon as the inputs have settled so

that the overall settling time is merely the maximum input settling time, (In

' 53

PX 56-4

the present computer, with an input fange of 1000 increments, the overall set-

tling time would be 500 cycles maximum for a conservatively scaled program,

* assuming all of the initial values to be at midscale,) When it is assumed,

however, that the maximum rates are less than one increment per cycle, then
some steps are going to ovérload durihg settling when rates are one_\increment
per cycle, Settling will -then take an additional period of time after the in-
puts have settled, during which the accumulated valﬁes on ﬁhe R-lines in ihe
various steps will be reduced to zero,

At this point a brief discuséion of settling will be introduced, The

settling period for a step may be arbitrarily divided into two parts: input

limited and output limited, Input limiting is said to occur when the inputs

are changing in such a way as to cause thé output to vary at less than one in-
cremént per cycle, Output limiting is said to occur when a step is overloaded,
The total settling time for a step may be calculated by first determining over
which periods it is input aﬁd output limited The xtimes fork;he two types of
settllng are calculated separately and then added together, As an exémple, the
case of multlpllcatlon will be cons1dered The factors U and V will be assumed
to start from zero and proceed at one increment per cycle to the positive values
Upax and V. which are greater than S, Input Iimiting will occur for S/2

cycles, at which time the pfoduct will be S/4 increments, Output limiting will
then occur until the value UV/S'is reached, The total settling tlme IS there-
fore: {5/2 + WV - 52/4}' LA +SS.[4 ks Zmax + % Cycles, In this particular

case the delay caused by the input limiting was,equal to one-half the period

over which input. limiting occurred,
An output limited step tends to accumulate large values on the R-line, thus
necessitéting Ionger word length, 1In geheral, a step should be scaled up until

it either takes too long to settle or else cannot keep up, If settling were

54

PX 56-4

not a limitation, then all outputs would presumably be scaled to change at a
maximum rate so that conservative scaling and ité modification would be idénti-
cal for all steps following input steps, As it is, settling time often appears
to be a limiting factor so that the modification is 6f value,

Conservative scaling is inefficient in that to insure that no step ever
overloads, the steps are usually scaled to run appreciably under full capacity,
This siﬁuation can be improved by the simple expedient of scaiing the steps up- -
ward to a .value, say 30 percent, above the conservative value,‘

Because of its advantage, i,e,, that all steps always keep up, conservative
scaling should be used in cases where the accuracy is adequate, It provides
minimum settling time and minimum word length, Its use is essentially mandatory
in steps involving integration, for if an integrand4does not always correspond
to the function it is being integrated with respect to, integration error will
be introduced, In the incremental computer this error is cumulative, and remains
until computation is re-initiated, This applies also to opgrations implicitly
using integration, such as generation of the logarithm and the exponential,

{2) WORD LENGTH CONSIDERATIONS, - When a program is so long that it
necessitat. s use of the whole dr?m, the word length of each step must be taken
into account, A step which is output-limited to any great extent accumulates
large values on the R-line, This action is most likely to occur during the
settling period ,ust after the computer is turned on, One of the advantages
of conservative scaling is that output limiting never occurs, hence the number
on the R-line is never greater than 25,

In cases when conservative scaling is not used some criterion other than
the magnitude of S must be used to assign word length, One method is to simu-
late a series of extreme cases as a basis for picking word length, A straight

analytical approach may also be used, It should be emphasized that while

55

PX 56-4

temporafy overloading is usually permissible, overflowing of the R-line must
never be allowed to occur; for, if the R-line ever overflows, permanent, almosi
invariably serious, errors arerintroduéed, making any additional computation
useless,

(3) INPUTS - RANGE EXPANSION. - Inputs which vary over only a fraction
of the range from zero to full scale may often be scaled up so that this region
océupies‘an entire comparison interval, This is permissible because of the
fact that the digital-to-anaiog converter éanvérts only the first ten low order
digits of a number, ignoring the others, The new regions are equal to the ori- -

ginal (12 to 1012), plus some multiple of 1024,

2 2

°

(4) EXAMPLE: SCALING x“, - As an example consider the function x
where -5 < x < + 3 and Iil s .02/cycle, First x is scaled, Assume, as is the
case with the present computer, that the input range is 0 * 500 increments, As
the maximum value of le is 5 it would appear possible to give x a coefficient
of 100, thus, representing it over the range from -500 to +300 increments, To
do this, however, would give the computer function a maximum rate of 1/C or ,01/
cycle, This is one-half the maximum rate of the external fungtion, Now, while
this condition might be tolerable, e,g,, when the peak rate occurred only rarely,
in general it is desirable to have the computer function always keep up, This
is accomplished by specifying C = 50, The range of the functionrin increments
is now from -250 to +150, a total range of 400, If it is assumed that x may be
at any Valué when computation is initiated, then the logical initial value for
x would be -50, If more is known about the behavior of x, a more suitable
choice may be made, |

Having scaled the input to the computer, the next step is to scale the funcf

tion x2 itself, First of all conservative scaling will be used, Referring to

the algorism for squaring it will be noted that the quantity x appears in both

56

PX 56-4

the U and V registers and that it is essentially added to R, every time x 1n-
creases by one increment, The largest value which appears in these rggisters
is -250, corresponding to x = -5, In the worst possible case, therefore, R

changes by 500 every cycle, due to this action, To compensate for this we

ici s (50)2
500. The coefficient of the output Cy is S =500 - 5

simply set S

x2 = (5)2 = 25, 5(25) = 125 increments, Using a different form:
max
(-250) (-250) _ .-
ooy - 125

In this case the same result may be obtained using the rate of the function,

=2, 55 =10(,02) =.2, 1/,2=5
X X“max

As a further illustration assume that the coefficient of 5 is not large
enough to provide the desired accuracy and that for that reason C was raised to
10, (S = 250), 1In this case the maximum value of Cx? equals 250, If x varies

at 0,02 per cycle when le,> 2,5, hoWever, x2

will not keep up, For all values
less than this (which in some cases may be most of the:time) x2 will keep up,
If it is known that x is small whenever lkl is large, then this type of scaling

would keep up all of the time,

Consider now the settling time of x2 under the two types of scaling, assum-

ing x-to be at its maximum, For conservative scaling (C = 5), x2 will settle
just as soon as x will; where xog = - 1, in 200 cycles, In the second case,
however, this is not true, Assuming that x, = - 1 as above, x2 will keep up for

125-50 = 75 cycles at which time x2 = 6.25, x2 will then change at its maximum
rate (,1/cycle) until it reaches the final value of 25, The total settling time
is 75 + 10(25 - 6,25) = 263 cycles,

e, COEFFICIENT RELATIONSHIPS, - This section deals with the algebraic equa-
tions and methods for computing scale factors and coefficients for the various

operations,

57

I. DESIRED OUTPUT
2. ACTUAL OUTPUT

+25}~—

o
N

10 fpoomr

400

2 SEC

300

200
| SEC

TIME

100

e
(A

-

)
2

»
o 07 a0y
2.0 va it

{4

p-9S Xd

Figure 1, Settling For x2

58

PX 56-4

(1) CONVENTIONS. - Whenever a function f is represented in the computer
it has two functions associated with it: the function F and the constant, or
coefficient, C¢, These three functions are related by the equation

F =Cgf 19

F is the computer representation of f and is defined as the number of increments

representing £, The coefficient, Cg¢, relating the two has units of incrementsk
per unit, As an example, if a disténqe x is represented in the computer by 10 :
increments per foot,’then when x = 7 ft,, X = 70 increments, Cx =10, It
should be emphasized here that the basic algorism and all equations associated
with it deal with the function F, not f, _

(2) BASIC ALGORISM AND ASSOCIATED EQUATIONS, - In the addition opera-
tion the increments A U and AV are progrémmed to be zero so that U and V re-
main at their initial values U, and V, and act as scale factors, It is not the

actual values of U, V, and S that are important, but rather their ratios, This

is fairly evident from the basic addition algorism 2,

v 2 U0 + Vo

' U
+ P 0

Vo ' ‘
s tP=EgQ+g T+P | 2)

To obtain the coefficient relationships begin with the general equation 3,
w=kq+mt +p | 3)
By definition | | |
P=Cpp, U=Cyu, V=Cyv, W=Cyw, Q=Cqq, and T = Cyt ' 4
Substituting equation 4 in équation 3

¥ _ o0 T P_
cw‘kcq*"ﬁz*cp

, c C C .

w w W .
or W=k Q+mg T +5 P 5
Cq C, Cp (5)

From equation 2 and equation 5

U C
q

UJ{°<
i
3
OI]
o |

, and Cy = Cp ’ (6)

59

FX 50-4

U.C vV, C
or Cu S k S m p
or S = Uo Cq . Yo C¢

k C4 m W

The usual procedure for picking U,, V,, and S is to pick the smallest inte-
gers ylelding the desired accuracy for the ratio, Small integers are picked to
keep the remainder as low as possible, As for all direct operations, the P-

term must have the same coefficient as W,

Product

Taking the multiplication algorism equation 7 and Substituting equation 4

into the generél equation for multaplication we obtain

uv
W=g +P (7N
w=kuv +p (8)
W u v P
— =k == +
Cw Cy Cy Cp‘
W= CWUV Cw p
CuCy Cp
let Cy = Cp
c,C
S = u-v
k C, ‘ s (9)
c.C
0 Cy=C, =LY
’ “TUP ks
Quotient
Proceeding as for multiplication
U = S(WV- P) (10)
u = klw - p) (11)
v :
U W P (v
—~— =k —_— - _—
Cu (CW Cp)/ Cv)

60 -

PX 56-4

k C,C P k C,C
U = C:v(va)'s= utv

Square Root
u=k+vw-p, u2=k2(w-p)

Substituting equation 4 in equation 13

c,2 ¥\, T C,
let

szcp

v _ 2 (M=)

c,2 Cy

from the square root algorism
U2 = S(W - P)

from equation 14 and equation 15

: |
kc,” kG J/5¢C,

S = =
¢, ~C,

Integration - Trapezoidal
2
w=2 [uar

wzkfudt

Substituting equation 4 in equation 18

k C |
or W= WfUdT

from equation 17 and equation 19

2:ka S__ZCuCt C LyCy
S CC¢' "7 kCy ' W™ kS

Integration - Point Slope

W~=%fUdT

a2

(13)

(14)

(15)

(16)

an

(18)

(19)

(20)

(21)

61

PX 56-4

Using equation 21 in place of equation 17

Integration - Reciprocal Integrand

=S fdW
Q“z]
= dw
q~kfu

Substituting equation 4 in equation 24

dw/C k C
g;:kf . * = Cwuf%

u/c,
k C,C '
or ¢=—c, I
From equations 23 and 25
s Ky o O, SC,
2 Cw ' Cy ' "9~ 2kC,
Differentiation .

Using the formula without the stabilizing term

S dw
g =22
2 dT

dw

k =22
dt

Substituting equation 4 in equation 28

Cy ~ “dt/C, T C, dT
U _ k C.C, dw
C, dT

From equations 27 and 29

s Kk C,Cy 2k CyCy 2k CyCy
o 'S:—'—"—— W= "< —

Exponential
W =,e2T/5

(22).

(23)

(24)

(25)

(26)

2

(28)

(29)

(30)

(31) -

62

PX56-4

ihis is obtained from
kw =‘j' kudt where w = u = el : (32)
,Substituting equation 3 in equation 32°

Wo_ U dr . 1 |
il I i [var | (33)

In order to have AW = AU, C =C,, therefore W = U
CT f ’ .
From equations 17 and 34

2
S

Olb—-

,S=2, € =3 (35)
t

From the above it should be noted that C, is independent of C;, the only require-
ment for consistency being that C, = C,., The coefficient of w is determined

from the relationship

W=C, kw (36)
Logarithm
T = % log W ' (37)

The logarithm is generated as the inverse of the exponential, namely, from the

equation

w= [udke) (38)
where w = u = x and kt = loge X (39)

substituting equation 4 in equation 38

I N S | |
Cw—kfcudct o fuar | (40)
dividing by equation 17 '
2 _kCy
2 _ (41)
s C.C,
But as C, = Cy as with the exponential
2:'.5_.(: :.'L_S —:E.t.
cs cy tT a3 (42)

Once again Cy is independent of Cy or C, and is determined only by the}scaling,

63

PX 56 -4

f, INITIAL VALUES

(1) Introduction, - At the time when incremental computation is begun,

-all.U and V registers must be set to a consistent set of values, which are

called initial values, This section deals with the theory of computing these
register values once the initial point has been determined, Re-examination of
the basic algorism reveals that there is one term (usually SAW) which is af-
fected by the previous sign of the remainder, At the beginning, however, there
should be no previous sign of the remainder to consider; therefore, the initial
values should be set so as to cancel out any effects of this term for the first
cycle,

The following helps to explain the effect of this term, Assume all inde-

pendent increments are zero, The increment for the dependent variable (deter-

mined on the previous cycle), is defined as plus one for the first cycle, This

increment multiplied by some register quantity is added into the R register,
causing a second increment to be generated opposite in sign to the first, This
second increment on the next cycle will counteract the effects of the first
ihcrement, thus leaving the R-line at or near zero, All steps foilowing this
one will have a -1 for the result of this step, whereas it will be first a +1
and then a -1 for all steps preceding it, In order to compensate for this dif-
ference the registers of all steps following the step are set to an initial
value one higher than norniale The initial output for these steps is calculated
using this higher value, After the first cycle, compensation occurs and the
output is equal to the unraised value,

(2) COMPARISON. - V is updated prior to comparison, During the first
cycle AV = +1 so that (V, + 1) is compared, For this reason the v register

should be set to a value one less than the desired initial value,

64

PX56-4

If the register valués in successive steps are each raised by an increment
as specified anove, the values in the final step could be considerably different
from the Qalues based on the unraised functions, After the computer is turned
on these steps will settle to the unraised values as expected, but only after
several cycles, as the raised value is several increments different from the un-
raised value, This difference can be minimized by choosing the sign of the func-

tions generated in the various steps in such a way as to have successive offsets

compensate for each other, For example, instead of generating x, x2, and x2 + Y,
one could generate x, -x2, and X% + y. In this case the second step would be
said to be flipped (from + x2 to - x2), Flipping is most conveniently done by

changing the signs of increments in such a way as to leéve the register values
unchanged, |

For arithmetic operations, flipping does not affect the final answer, but
merely eliminates the iﬁitial delay described above, In the case of integration
and related operations, however, this initial delay can cause integration error
which is permanent, For this reason flipping should be used in steps affecting
an integral, In other cases the procedure is desirable though not necessarily
worth the effort,

g. METHODS

(1) INTRODUCTION, - The theory of program preparation has been dealt

wiih above, The following is a presentation of the techniques and conventions
which have been used in the task of program preparation, While no claim is made
that this system is the best one, it has worked satisfactorily and is the result
of modification of several prior systems with which trouble was experienced
over the past months,

The results of the preparétion routine are expressed in the form of three

tabulations: (1) an algebraic listing of the dependent variables in each step

65

PX 56-4

accompanied by a sign coiumn° step number, scale factor, and coefficientg (2) a
program tabulation giving the signs and addresses of eadh of the increments in
each step, and (3) a constants tabulation listing the values of Uy, V,, and S
for each step, Tabulation 1 is essentially for checking and is the basis for
tabulations 2 and 3, | |

The first step of programming is to determine a set of intermediate func-
tions to be used in . computing the desired outputs, These are arranged in se-
quence in accordance with the principles described iﬁ the section on sequencing
and listed on Tabulation 1, the sign column being left blank, On Tahula;ion 1,
the quéntities>appearing on the V-line are singly underlined, Those steps which
have inputs or outputs have the V-line quantity doubly underlined,

The scaling operation is then begun, uéing whichever method is desired,
Work in general is done consecutively from step to step in sequence, By this
time the initial point has usually been decided upon so that settling time can
be taken into consideration, If the coefficients are being primarily determined
rather than the scale factors, then the scale factors must be calculated, too,
rounded off to the nearest integer, and used as a basis for calculating exact
coefficients, In this way the round-off error for the scale factors can usually
be eliminatéd, It often bays to go first through the program and set approxi-
mate scale factors or coefficients, performing the exact calculation later, In
the case of conservative scaling it is often desirable to calculate Wpax in a
step and use this value as a basis for scaling succeeding steps, This is parti-
cularly convenient in cases where the functions in many steps maximize under the
same conditions,

The next:operation is to calculate the initial values, Presumably by this
time the initial point“has been determined from input and settling considerations,

When flipping is to be done, it is desirable at this time to calculate the

66

PX 56-4

complete set of scaled initial functions and to tabulate them, Then, when the
initial values are calculated, the sign of the dependent variable is taken in
such a way as to make the values of the U and V registers holding this function

as close to the calculated value as possible, As an example, consider the func-
2

It

tion x“ where x4 = 5, C 100, and C 2 = 10, The input to step is Cxo + 1 = 501,
.70 X X

I

and the output is iggélg 251, The step is then flipped to give - x2 so that
250 = 251 - 1 rather than 252 may be entered into the U or V register of the
succeeding step using x2, Whenever a step is flipped a minus sign is entered
in the sign column of Tabulation 1, Initial values are most conveniently calcu-
lated using the scaled values of the functions as shown above, For, using the
scaled values it is possible to go from one stép to the next, using only the
previous values along with the scale factofs in the computations, If these
scaled values are checked with the initial function values mentioned above, a
double-check on the scaling operation is provided, For convenience, the flip-
ping of a step is done in such a way as to leave the quantities in the U and V
registers for the step unaltered, Flipping a direct operation consists of re-
versing the sign of AP, AQ, and AT, Flipping an inverse operation consists
of reversing the sign of AW and the dependent increment,

(2) SIGN CONVENTION, - The dependent variable of a step is defined as
the function listed on Tabulation 1, neglecting the sign columd, It is this
value which appears in subsequent U and V registers, The function sgn R multi-
plied by the sign in the sign column is taken as a positive increment, Inverse
operations, i,e,, division, square root, differentiation, and logarithm, are
considered toihave a negative sign if A f = - sgn R, which is the convention
used in the section on theory,

In setting up the convention it was attempted to have a System whereby flip-
ping could be done with a minimum of after affects, Toao, it was desired to have

a rigid convention in which errors were readily apparent,

PX 56-4

Again it should be siated that though various operations are stated sepa-
rately, the programmer must take all into account simultaneously to do thé best
Jjob of scaling, Usually the operations are repeated, at least to some extent,
in an attempt to converge to the best possible program,

h, CHECKING OF COMPUTED PROGRAM

(1) INTRODUCTION, - Tabulation 2 provides a convenieni intermediate form
for a program, This is primarily because a punched tape of the tabulation can
be fed into the Univac Scientific Computer for simulation, This form also has
the advantage that it is convenient for checking errors, Due to the standard
form and convention adoﬁted a great many of the common clerical errors can be
either avoided or else quickly spotted, The checks which are applied are 1)
address checks, and 2) sign checks, A cafeful check of Tabulation 2 can almost
eliminate programming errors, In the checking operations involving either Tabu-
lation 2 or 3, Tabulation 1 is used as the standard,

The following are the checks which are applied to Tabulation 2, The incre-
mental addresses are checked against Tabulation 1 to determine: 1) whether the
right addresses were used, and 2) whether they were addressed to the appropriate
increments, Knowledge of the normal layout of the operations (see Figure 2)
makes the latter simple to perform,

Due to the convention used, the signs of the register values are always for
the positive function (that is, for +f, even though f may be negative), They
are uﬁaffected by flipping the step in which they occur, The signs of AU and
AV may therefore be checked to see that they generate + U and + V, The éigns
of the other increments may then be checked to see that they generate a function
with the same sign as specified in the sign column of Tabulation l,)

As the U and V registers contain the operands as listed on Tabulation 1,

they may be checked against the initial value tabulations, A fairly convenient

PX 56-4

Operation U v P 0 T W

Addition B N () e
Multiplication B I) O e
Division N Y N O e
Integration (t) B EEET | 1 71 s
Integration (p.s.) == | e
Input-Output R

Square CO O))
Square Root B I I 0 B EiEaE
Logarithm B A)
Exponential B @erna| B
Differentiation B [] N

NOTE: Each color stands for one incremental address, The dependent incre-

ment is green,

Figure 2, Tabulation No, 2 Check

69

PX 56-4

" check: on the initial values is obtained by calculating them first using the un-

scaled inputs and the set of equations and then recalculating them just on the
basis of the U, V, and S register values alone using the algorisms,

(2) SIMULATION, - The above checks allow one to be reasonably certain
as to the correctness of his program, The next step is usually simulation on
the Univac Scientific Computer, This is convenient at this time because Tabula-
tions 2 and 3 may be punched on paper tape and fed directly into‘the computer

once the SIMIC (SIMulation, Incremental Computer) control tape has been run in,

While the SIMIC routine allows the use of only static points as inputs, it,

nevertheless,hés been very successful for troubleshooting purposes,

‘The usual procedure is to pick a static point at which all of the inputs
have changed, The point is run until all §f fhe computer values are expected
to have settled, with periodic dumps taken dufing the simulation as well as at
the end,' The values for the computer functions are calcuiated for this second
point and compared with the values obtained with the dumps, The_comparison
shows up any program errors which have not been found earlier., If errors are
found, it is possible to check for errors in steps following the erroneous one
by determining whether or not the later values are consistent with the first
error, Once the program has been checked out in this manner it is possible to
run. any other simulation which is desired, including one with dynamic inputs
(by means Qf the DYSIMIC and POLYSIMIC routines), When the prdgram has proved
satisfactory it may be coded up for the incremental computer itself,

i, SIMULATION

(1 INTRODUCTION, - There are three simulation routines which may be
used: SIMIC, POLYSIMIC, and DYSIMIC, The difference between the three involves

(1) different incremental input procedures, and (2) different monitoring features,

In the SIMIC program the inputs (equivalent to the analog inputs for the real

70

PX 56-4

incremental computer) remain constant unless programmed to a different value,
While this limited type of input is very useful for eliminating program errors,
it does not permit simulation under dynamic input conditions which normally occur
in practice, In some cases the incremental program itself may be used to pro-
vide the dynamic inputs, This is done by incrementally programming functions
to provide the desired inputs, A POLYSIMIC program is a SIMIC program in which
incrementally-combuted polynomials in time are used for inputs, The third possi-
bility is DYSIMIC, This routine, independent of SIMIC, takes values for the in-
puts, tabulated for regular intervals over the proposed simulation period and
uses cubic interpola&ion to provide values to the computer every major cycle,
Independent computer routines may be used to provide the input tabulations if
desired, |

(2) SIMIC, - The SIMIC input program is composed of several sections,
each introduced by a code word, These code words prepare the computer to act
appropriately upon the data in the section, The sequence of these sections in
an actual program is important only in that the data conditions for any desired
simulation must be given before the COMPUTE command is given, The program is
all in Flex-code,

(3) PROGRAM, - The section is introduced by the word PROGRAM preceded
by a shift up following a carriage return, It contains all of the incremental
addresses from Tabulation 2, The information consists of one line for each step

of the program, each line being composed of a 3-digit octal step number followed

by six signed 3-digit octal addresses, The computer ignores all material follow-

ing the code word until it reads in a carriage return followed by 3 octal digits,
During simulation the sign of the remainder of each step is considered to be
stored in a register bearing the step number as an address, The addresses, in

order from left to right, are: AU, AV, AP, AQ, AT, and AW, Any increment

71

A 90—

may be programmed zero byvusing "n" as an address, The sequence of steps with-
in the program, constants, and input sections is immaterial; the step numbérs
determine sequence, The results of a comparison in a step are considered to be
stored in a register with the same units and tens digit as the step, but with
3 for the hundreds digit, There can be comparisons only up through step 077,
There must be a line beﬁiﬁning With the number of the last step in the program
plus one followed by the words "end of program”, This causes the computer to
begin the next major cycle, Finally, there must be a line beginning with the
number 400 followed by six unsigned 3-digit octal step numbers, The presence
of a step number causes the V-line of the step to be printed out, The addition
of 300 (octal) to the step number causes the R-line of the step to be printed
out, The program may contain up to 277 (6ctal) steps, A stop code (anywhere
in the program section) signifies the end ofvthe section and causes the computer
to begin-looking for the next code word, However, a carriage return at the end
of each line (including the last) is necessary to cause that line to be stored,

(4) CONSTANTS, - This section, introduced by the sequence: carriage
return, shift up, CONSTANIS, contains all of the initial values and scale factors
from Tabulation 3, There is one line for each step, Each line begins with a
step number followed by 3 signed 6-digit decimal numbers: Use Voo aﬁd S, in
that order, Each number, though integral, may be punctuated by a period between
any digits, The section is ended by a stoh code, Again, each line (including
the last) must be followed by a carriage return,

(5) OUTPUT HEADING, - This section is introduced by the sequence: OUT-
PUT, space, HEADING,'carriage return, All material following the carriage re-
turn is stored character by character, It is punched out before each section of
results, A stop code following a carriage return signifies the end of this ma-

terial; It is limited to 376 (octal) characters, including spaces, shifts up or

72

rX 20-4

down, punctuation, etc, The output heading may be eliminated by programming an

~ output heading with no characters in it,

(6) INPUT, - This section is introduced by the sequence: INPUT, All
material is ighored until a carriage return followed by a step number is read,
Each line consists of a step number followed by signed, 6-digit decimal number
with a period between the third and fourth digits, There must be ad input line
for each step containing a cdmparison, The section ends with a stop code follow- '
ing a carriage return,

(7) CONTROL, - The above sections are used for loading information into
the computer, The control of the simulation is essentially performed by the
words "type (one space) spacing",\"compute",~"dump", and "restore”, The word
"type spacing”, preceded by a carriage retﬁrn, is followed by a signed, 6-digit,
decimal number with a period between the third and fourth digits, During the
simulation, this number gives the number of major cycles between print outs
(actually punched), The word "cycles" may optionally be added after the number;
it has no effect, The nupber, once set, remains the same until changed, The
word "compute", occurs with the same format as "type spacing”, The number in
this case, however, specifies the number of major cycles to be simulated; it is
normally a multiple of the "type spacing” number, The "compute" command must
be repeated for each computation desired,

A "dump” is a print-out of all the simulated registers in a program, It
may_be célled for at any time by inserting the word "dump", preceded by a car-
riage return and followed by a space, This instruction by itself will print
out the contents of all the R-lines, If the space is followed by a “V",all of
the V- and R-lines will be printed out, If the space is followed by a "U", all
of the U-, V-, and R-lines will be printed out, This print-out, as is the hor-

mal print-out, is in flex-coded decimal, A special tape may be added to the

73

PX 56-4

'SIMIC master program which causes octal rather than decimal print-out, The

code symbol " =" will cause six inches of leader to be punched, This is often
wmseful for identifying the various sections of a tape,
Often it is desired to simulate several programs in succession without re-

loading the master tape; the "restore™ ecemmand allows this to be done by setting

~all of the R-lines to zero and by sétting all of the increments to their initial

value, which is plus one, Restoration is caused by the word "restore" preceded
by a carriage return and followed by a carriage return and then a stop code,

As mentioned above; stop codes signify the end of certain sections (any
section of variable length) and cause the computer to search for the next code
word, Any uncalled for stop codes will cause the combuter to stop and may be
used for this purpose, The computer may bé starped again by pushing the START
button, ’

(8) COMBUENTION.TIME, - As would be expectéd, the computation time is
a function of: .1) number of steps, 2) number of majof cycles, and.iS) number

of print-outs, As a rough guide, the computation rate may be taken as four

- cycles per second for a one-hundred octal-step program, Print-outs require ap-

kproximately one second per line, As this program operates almost exclusively

off the drum, it is essential that an 8-interlace be used for most rapid compu-

“tation, However, there is little loss in speed when a lé-interlace is used,

Use of 4-interlace will increase the computation time prohibitively,

(9) DYSIMIC, - For convenience, DYSIMIC has been designed to use essen-
tially the same program and constants sections as SIMIC, It is more restricted
with respect to format, however, The computer recognizes the "PROGRA" of
“PROGRAM" and then ignores‘all else until it reads a carriage return followed
by three zeroé. It then takes in the following information, ignoring step num-

bers, It assumes the steps to be consecutive and increasing, This process

74

YA DO-4

"t

- stops on the recognition of the "e" from *end of program”, Search is then be-

qan for the 400-line which may contain the addresses of up to six V addresses,

i,e,, stép humbérs, The following'carriage return triggeps the search for the
Sbo;linekinto which the control section is éondensed, The "500" is followed'by
four octal number in ordetz .1) total majoricycles, i2)-major cycles between
input references [nbtez 125,3 1) for no references], 3) major cycles between
print-outs, and 4) stéps per major cycle Ld) = 76 (octal)].

The carriage return followingAthe 500-line triggers the search for the
"CONSTA“’of‘"CONSTANTS"; After a carriage return followed by three zeros the

constants are stored, Once again- the step numbers are ignoréd and the steps

‘are assumed to be in consecutive, increasing order, U,, V,, and S must be pre-

sént in that order, The numbers are signed, 6-digit and decimal, The period
used in SIMIC is ighoredAand thus need not be present, The "¢ from "end of
constants” is sensed>and‘stopc-the.computer, ready for the actual_simulation,

J. DEMGNSTRATION PROGRAM, - An example is included below as an illustration

of programming, In it,the functions AA and AE are computed, (The A here

does not-indicate*an increment,) In the following pages the equations, program,

énd samp1e calculations are givén. In addition, a SIMIC input tape is repronl
duced, - L | |

This program uses double point-slope integration to generate sine and cosim

functions, The use of this‘type of integration leaves the V-line free for in-

put/output, Thg initial values of thé inputs were chosen‘énd the corresponding
T and Ry calculated, The values used are: |

R = 5400 ft., -R = + 400 ft,/sec,,

»\(A-‘lr)sEzl.Z.-__‘i‘ z 0

a=,94, £ =6 W=800ft,/sec,, (V, - 1800) = 451 ft,/sec,

PX 56-4

for these:

T = 2,3264 sec,

Ry = 4469,4 ft,

AE = 7,3 milliradians
AA =0

76

PX 56-4

TABLE NO, 1 - EQUATIONS

t

T=V,-10% P Ry (0 cos & cos E 2030)

Re = R + kr » BEI2 2+ 2

2(R ¢+ k)
T = Re/V /
Q = 1412
ppo i1 (0608 ¢ 139 P WTstna L, Wcos A cos E sin E
cos E | v 4.4 x 104

AE =BT o @ cos E , (060 & + ,133) Po W T sinE cos A _ _W sin A
R g

f v 5.58 x 10%

PX 56-4

TABLE NO, 2 - INPUTS

Input Description Unit Coefficient Minlmu%ﬂﬂgggggiggg
R sight range ft . 16667 ' 6ﬁ00"
&A‘-‘W) - sight azimuth . . rad 500 B .1 +1
E v:icht elevation rad 750 | 4%1 ¢%'
R range rate , ft/sec 1,25 0 .800
T* ~ traverse zate ‘ rad/sec 1750, , -3 +.3
E elevation rate ; - rad/sec 1750, -.3 .3
W gun platform velocity - ft/sec 1, 0 1000
(Vo = 1800) muzzle velocity fi/sec 1. 18600 2800
IS ~ relative air density - 1000 0 1,0
(a - .7833) relative air iemperature -

-- 4615 +5666 1,0000

78

PX 56-4

Step Sign Function

o
001
002
003
004
005

006

007
010
011
012
013
014
015
016
017

1020

021
022
023
024
025
026
027

Note:

+ RT

+ sin E cos A

+ R + RT

+ R2T2

+ E?

+ Q= 1412

+ E2 + j;2

+ cos A cos E

+ (a-.7833) T

+ Q cos E/Rf

+ Pr (060 a + ,133)

+ 3313 (+2 + E2)

+ P TH (060 a + ,133)

+ B2 (124 EH /2R + RT)

+ W cos A cos E
R2T2(T2 4 £2)

TABLE NO, 3 - TABULATION No, 1

+ Ry =R +RT + -
2(R + RT)

+ f‘I

+ sin E = fcos EdE

+ Rg (W cos A cos E + 2030)
+ i _T/cos E

+ Q éOS E/Rf
-4

4+
1=

'S
]

=V, - 10

P Rg(W cos A cos E + 2030)

+ cosE.—.-fsinEdE

+ P IW(060 a + . 133)/V

Single underline indicates V-operand; double underline

indicates input or output,

Inputs

R

&

i_

a

P

W

E

(Vo - 1800)
————— 1
E

(A -7)
3

PX 56-4

Step
030

031
032

034

035

036

Sign Function : o Inputs
+ Rg/ V=T | |
+ P ™ sin A (,060 a + ,133)/ V + #T/cos E = AA
* P TW sin E cos A (,060 a + 133/ V + Q cos E/Rg +
ET = AE | “ | |
+ ‘sinAzfcosAdA : ‘ 'M
+ (0608 + 13T =06 [(a - .7839)T + 31 |
* cos A = - fsin AdA o o ' AE out
+ Q cos E

TABLE N0, 3 - TABULATION NO, 1 - {cont,)

Note: Single underline indicates V-operand, double underline
indicates input or output,

80

PX 56-4°

TABLE NO, 4 - SAMPLE SCALING CALCULATIONS

W cos A cos El

5 - QN Ly,

c = 800.84 _; 40105

800
1]

o - (17500(300) =
5= €2000) 262

C = 2003.8

Rf/ V:Tvl

< £3000(1,)
S=""(1/e) = 1800

€ = (1800) (1/6) = 300,00

Re (W cos A coé E + 2030) I

_ £1.00103)(1/6) _ -6
¢ =8 o0 = 83.4208 x 10

EY(D +Q cos E/Ry|

_ (1750) (300) _
§=""0o000 T 262

¢ = UT30(300) _ 5404 g

. (262)
tT/cos E I

_ (1214,90) (500)
S =" 0038 ™ 303

€= 0na,90) = 499.75

PX 56-4

TABLE NO, 5 - SAMPLE INITIAL VALUE CALCULATIONS

%00 RTI. |
W= 490000 | g

= 420

#01 sin E cos A i

_ £-594) (+1)
¥=""(go2) *1=0

3.1

%02 R + RT

(2250)

W= (699) (-499 +900 + 1 = 746

= -~ 155

803 RTZ l

421)2 |
L2 o

W ="0667
. = 266
P 20 2 1 =
et 1=+l
| o
#05 Q = 14T2 |
_ £699)2 _
V=g * =188
' = 152

82

TABLE NO, 6 - INCREMENTAL COMPUTER PROGRAM - TABULATION>N0._2

"PX 56-4

Program No, 2032-B Date: 9/10/56 Programmer: GAC
Title: Demonstration Program , | : Page _1_of _2
Step| A U AV A P A Q AT AW Remarks

000 | +| 030 +| 300 n | +| 300 |+(030|+] 000

001 | +]035(+| 021 n |[+]021|+[035(+]00l

002 | +]030| +|302|+|300]-]302|-]|030}+] 002

003 | +]000]| +| 000 n +]000|+]| 000 |+ | 003
004 | + 324 +| 324 n | +|324]+1324 |+ | 004
005 | +] 030} +{ 030 n |+]030]+]|030]|+]| 005

006 | +|306| +]306| +|004|+[306 |+]|306]+]| 006

007 | +|035] +| 026 n [+]026| +| 035 |+] 007
010 | +|030| +| 310 n |+|310]+|030]|+| o010
o11 | +|o17| +| o1 n || o] -|o17]-]| 036
012 | +|034| +| 312 n |+|312]+| 034+ o012
013 | +.006] + .603 n |+ 003|+|006]+|013
014 | +|012| +| 314 n |+|314]+|012]+] 014
015 | +| 002 +| 015 n [-|o15]|-|002]-]|013
0l6 | +| 007 +| 314 n [+]314| +| 007 |+| 016
017 n | +|317] + 002 +| 015 n + 017
020 | +|306] +| 030 n |+]| 030/ +|306]|+| 020
021 | +|026| +| 321 n | +]|317 n |+] o2
022 | +| 016 +| 017 n |+ o17|+|ote |+ 022
023 | +|026| +] 023 | n |-|o23|-|026]-{020

024 | +| 030| +| 324| +|o11|+|324] +| 030 +| 024

TABLE NO, 6 - INCREMENTAL COMPUTER PROGRAM - TABULATION NO, 2 (comt,)

Program No, 2032-B Date: 9/10/56 Programmer: GAC
Title: Demonstration Program ‘ Page _2 of _2_
Step] A U AV AP A Q AT AW Remarks

025 | +| 312 | +|022| +| 321| - 022 -| 312| +| 025

026 | +| 021+ |326 n | -| 317 n | +| 026
027 | +| 025 | + | 027 n | -| 027] -| 025 -| 014
030 | +| 030+ | 025 n| -| 02| -|o030]| -| 017

031 | +] 027 |+ | 033 +| 023 +| 033| +| 027 +| 031
032 | +| 027+ |o0L| +| 011| +| ool | +| 027 +| 032

033 | + 035 | + | 031 n | +| 326 n | +| 033
034 n| | n n | +| 030 +| olo| +| 034
035 | +| 033|p (032 | n |- 326 | n|+| o035
036 | +| 026 |+ | 005 n | + 005| +| 026| +| 036
037 end of p?oﬁram |

PX 56-4

TABLE NO, 7 - INCREMENTAL COMPUTER PROGRAM - TABULATION NO, 3 =

PX 56-4

Program No, 2032-B - Date: 9/i0/56' P Programmer: GAC
' Title:.yDemonstration Program o | ' .Page L of 2 |
step| U, o | s c
{000 | +| 000,699 + OOO.B9§ +| 001,500 .03333/
OOi -| 000,594 | + 000;001 +| 000,892 500,48
002 | +| 000,699 | +| 000,499 | +| 002,250 . 16667

003 |+| 000,421 +| 000,421 |+| 000,667 | 11,6666 x 10-%
004 |+ ooo.dol ~+| 000,001 | +| 000,875 | 3500

005 | +| 000,699 | +| 000,699 |+| 003,214 | * 2,0002

006 |+| 000,001 | -| 000,001 | +| 000,875 | 3500

007 |-| 000,594 | +| 001.216 | +| 000,903 | 800,84

010 |+| 000,699 | +| 000,722 | +| 001,153 | 1200, 78

001 |+| 000,746 +| 000,035 | +| 000,167 | 2003,8

012 |+| 000,679 | +| 000,599 | +| 001,100 | 1399,5

013 |+| 000.001| +| 000,267 |+| 000.250| 2.3332 x 108
014 |+| 000,371| +| 000,799 | +| 000,700 | 2

015 | +| 000,746 +| 000,001 | +| 000.596 .16688
0l6 |-| 000,800{ +| 000,801 | +| 000,800 1,00105
017 |+| 000,001 -| 000,001 | +| 000,001 ,16667

020 |+| 000,001 | +| 000,699 | +| 000,262 | 2003.8

021 |+| 001.215| +| 000.450 | +| 001,215 | 750,00

022 |+| 001,230| +| 000,751 | +| 002,000 | 83,421 x 10-%
023 |[+]| 001,216| +| 000,001 | +| 000,303 | 499,75

024 -|{+| 000,699 | +{ 000,001 | +| 000,262 | 2003,8

PX 56-4-

TABLE NO, 7 - INCREMENTAL COMPUTER PROGRAM - TABULATION NO, 3 (cont,)

Program No, 2032-B

Date: 9/10/56 Programmer:
Title; Demonstration Program Page.__2_ of 2
Step U, v, s C
025 000,601 | +| 000,460 | +| 000,834 [1,00024
026 000, 001 000, 001 000,463 | 1214,90
027 001,922 | +| 000,283 | +| 001,500 | 3000,0.
030 000,699 | +| 001,922 +| 001,800 300,00
031 000,283 | +| 000,001 | +| 000,500 | 3000,0
032 000,263 | +(000,001 | +| 000,500 | 3000,0
033 /000,595 | -| 000,001 000,595 | 500, 00
034 000, 001 000/012 000,013 | 1539.45
035 000, 001 000, 021 000,420 | 595,24
036 001,216 | +| 000,153 | +| 001,215 2,0000

36

PX 56-4-

TABLE NO, 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE ~

Programmer: GTU GAC

Program No, 2032-B Date: 9/10/56
Title: Demonstration Program Page _1_'01 5
Step| AU| A V]| AP| A Q AT AW
000 |+| 030| | 300 n | +| 300 +| 030] +| 000
001 |+]| 035| +} 021 n | +| 021 035} +| 001
002 |+| 030| +| 302| +| 300| -| 302 030| +| 002
003 |+| 000| +| 000 ® | +| 000 000} + | 003
004 |+| 324| +| 324 n | +| 324 324| +| 004
005 |+| 030| +| 030 n | +| 030 030| +| 005
006 |[+| 306{ +| 306 +| 004| +| 306 306| + | 006
007 |+| 035| +| 026 n | +| 026 035| + | 007
{010 {+| 030 +| 310 n | +| ?10 030| + | O0l0
011 |+| 017| +| oll n | -| oll 017| - | 036
012 [+] 034 +| 312 n | +| 312 034| +| 012
013 |+| 006 +| 003 n |+ 003|+| 0o6l+ |o013
014 |+] 012| +| 314 n| +f 314 012} +| 014
015 |+| 002| +| 015 n| -| 015 002| -| 013
016 |+| 007| +| 314 n | +| 314 007| +| 016
017 n | +| 317 +| 002| +| 015 n | +|017
020 |+| 306| +| 030 n | +| 030|+| 306| +| 020
021 |+| o026/ +| 321 n | +| 317 n | +| o021
022 | +| 016 +| O17 n | +| 017 0l6| +| 022
023 [+| 026] +| 023 n| - 623 026 - | 020
024 [+| 030| +| 324 +| o11] +] 324 030| +| 024 |

81

TABLE NO, 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE {cont,)

- Program No, 2032-B Date: 9/10/56 Programmer: GIU GAC

Title: Demonstration Program Page'_z_ of 5

Step]| AU | AV][AP| AQ| AT AW

025 |+] 312 | +]| 022 +| 321 -| 022] -] 312] +| 025 .

026 |+| 021 |+ 326 n | -] 317 n | +]| o026
027 |+| 025 | +| 027 n | -] 027| -] 025 - | 014

030 |+]| 030 | +| 025 n |- 025 -] 030 -(017
031 |+ 027 |+ 033] +| 023]| +| 033] +| 027] + | 031
032 |+ 027 +1 001 | +| Ol1| +| o0l | +| 027| +| 032

033 |+ 035 [+| 031 n | +| 326 n | +| 033
1034 n n n | + 036 +| 010 f' 034
035 |+| 033 | + 032 n | -| 325 n | +]|035
036 |+ 026 |+| 005| | n | +| 0os| +| 026/ + 036

037 end of program -

400 | | 033 | |035| | 020 | 030 |o22| |o36
(STOP) |

PX 56-4

88

PX 56-4

TABLE NO, 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE (cont,) |

Programmer: GTU GAC

Progfam No, 2032-B Date: 9/10/56
Titles Demonstration Program Page _3 of S
CONSTANTS

Step Uo Vo S

000 | +| 000,699] +| 000,899 001,500 |
001 000,594| +| 000,001 000, 892
002 | +| 000, 699 000, 499 002, 250
003 | +| 000.421| +| 000,421 +| 000/667
004 | +| 000,001| +| 000,001| +| 000,875
005 000, 699 000,699 | +| 003,214
006 000, 001 000, 001 060.875
007 000,594 001,216 000,903
010 | +| 000,699| +| 000, 722 001, 153
011 | +| 000,746 +| 000,035 | +| 000,167
012 | +| 000,679| +| 000.599 | +| 001,100
013 | +| 000, 001 000,267 | +| 000,250
014 | +| 000,371 000, 799 000, 700
015 | +| 000,746| +| 000,001 | +| 000,596
016 | - | 000,800| +| 000,801 | +| 000,800
017 | +| 000,001 000, 001 000, 001
020 | + | 000,001 000, 699 000, 262
021 |+| 001,215| +| 000,450 +| 001,215
022 |+ 001.230(+| 000,751 | + | 002,000
023 | +| 001,216(+| 000,001 | +| 000,303
024 |+ 000,699 000, 001 000, 262

89

PX 56-4

TABLE NO, 8 - DEMONSTRATION PRQGRAM UNIVAC SIMIC INPUT TAPE (cont,)

Program No, 2032-B

Title: -Demonstration Program

Date: 9/10/56

Programmer:

Page _4_ of _5_

GIU GAC

CONSTANTS
Step Uo Vo s
025 |+| 000,601 | +| 000,460 | +| 000,834
026 |+| 000,001 | - | 000.001 | +| 000,463
| 027 |+| 001,922 | +| 000,283 | +| 001,500
030 |+| 000,699 | +| 001,922 | +| 001,800
031 |+| 000,283 | +| 000,001 | +| 000,500
032 |+| 000,283 | +| 000,001 | +| 000,500
033 |- | 000,595 | - | 000,001 | +| 000,595
034 |+| 000,001 | +| 000,012 | +| 000,013
035 |+ 000,001 | +| 000,021 | +| 000,420
036 |+| 001,216 | +| 000,153 | +| 001,215
(STOP)

90

PX 56-4

TABLE NO, 8 - DEMONSTRATION PROGRAM UNIVAC SIMIC INPUT TAPE (cont,)

Program No, 2032-B | Date: 9/10/56
Title: Demonstration Progrém Page _5_ of ;gL_
INPUT
000 + 000,562
002 + 000,645
006 + 000,036
010 + 000,723
012 + 000,600
014 + 000,800
017 + (000,327 /
021 + 000,451
024 - 000,092
026 -~ 000,470
(STOP) -

OUTPUT HEADING

RESULTS

CYCLE

(STOP)

Program 2032-b Demonstration Program GTU GAC 9/10/56

dA dE - T v Rf Q

type spacing(000, 050

compute 000,800 cycles

dump u

{SToP

)

)

Programmer: GIU GAC

PX 56-4

‘3, + CODING

a, 'INTRODUCTION, - The solution to a mathematical problem is expressed as
a series of equations, In order for a computer to solve a problem, it must be

given instructions so that it will solve these equations, The translation from

‘equations to machine instructions is called coding,

All of the information necessary to code for the incremental computer is

contained in the command code sheet (LFigutes3;) and the algorisms, The follow-

_ing paragraphs will explain and illustrate their use,

b, PROCEDURE IN CODING, - The equations are broken down into a series of
simpler equations, called steps; Each step must be capable of being handled by
one of the special algorisms, For example, the multiplicatibn algorisms is
W= g! + P, so'two quantities could be multiplied énd a third added to thé pro-
duét in one step,

Using the §pecial algorism, identify the variables of each step with the
éorresponding variable in the algorism, For example, let us compute the equa-

tion Z = XY,' From the multiplication algorism we are given W ='%! + P, To

change'our'equatién to look like this we can write Z = XY + 0, It is now plain

that P=0, X=0,Y=V, Z = W,

We have nqw identified the variables in our simple equatlon with the varia-

bles in the algorism, Using the restrictions for the multiplication algorism we

have

\ 1 for Ry positive
AQ; = AV, AT, = AU,, AW;,, = {* iPp
% b i 1 1+ {~ 1 for Rj negative

So we instruct the machine to- read + AQ:and + AV from the address whére AY
is stored, and + AT and + AU from the address whére AX is stored, We can
make P = 0 by not reading it,

When R; is positive, the output increment of the step read by AW is posi-

tive, and when Ri is negativé the increment is negative, Therefore, if we

92

YL 84283

Figure 3.

Command Codes, Incremental Computer

93 .

)
w

[AT AR iU I (T - A S - A - R A A R 2 L2 A - SR R A - S - I -

[« N S I N 7 N -

~N -~ v e

~N o o o

[

[7- B]

 COMMAND CODES

D. S. Address

No Action

Initiate Comparison Non-complement ,°

Initiate Comparison Complement'

End pulse.

End pulse.

Initiate step

Initiate step

Read + AP from last indicated

Read
Read

Read

Read

Read
Read
Read

Read

Read

Read

Read

Read

Initiate cycle

0

bt
L - - [*]

+

+

AW from last indicated

AV from last indicated

+ A Q from last indicated

+

+

+

]

AT from last indicated

AU from last indicated

AW from Sign o:f Ri—l . .

AP from last indicated
AW from last indicated
AV from last indicated
A Q from last indicated
AT from last indicated

AU from last indicated

Comparator address . .

Comparator address .

. . e o . . .

address

address .,

address . .
address . .‘.
address . . .

address ., . .

address . . .
address , . .

address ., ., .

. . L] . ¢ e

address

address ., . .

address . ., . . .

. « o+ .

.

. . . o s e

R R e IR R

(A-T AR - L R - I I SR 2 - Y)

NN

[\ =T AR &

[T \- R \ I (I b

= W NN O

(=N 4

~N -~

Yot ot

COMMAND -CODES

D. S. Address

No Action

Initiate Comparison Non-complement
Initiate Comparison Complement . .

End pulse,

End pulse.

~Initiate step

Initiate step

.

Read + AP from last indicated address

Read + AW from last indicated address

Read + AV from last indicated address

Read + A Q from last indicated address

Read + AW irom Sign of Ry - - .

Read - AP from last indicated address .

] Read + AT from last indicated address

Read + AU from last indicated address

Read - AW from last indicated address

Read - AV from last indicated address

Read

Read

A Q from last indicated address

AT from last indicated address

Read - AU from last indicated address

Initiate cycle

0 Comparator address . . . ,
1

2

:

3 ,

6 Comparator address ., ., .

oooooo

e 6 8. e & a

_ COMMAND POSITION
. 09 o% X
| 09 of x
12th digit after Initiate Comparison
- 12th digit after Initiate Comparison’
- 00 of x

+ 00 of x

+ ¢« 02 of x - 1 through last digit of x - 1

. 01 of x - 1 through. 00 of x
02 of x - 1 through 00 6f X

+ 04 of x - 1 through 02 of x

+ + 03 of x - 1 through 00 of x

03 of x - 1 through 01 of x

pr-200f x ~ 1 where p =

of digits in x - 1 and x. p2 21,

+ 02 of x - 1 through last digit of x - 1
. Olof x -1 through 00 of x

c 02 o0f x~-1 through 00 of x

+ + 04 of x - 1 through 02 of x

+ + 03 of x - 1 through 00 of x

« 03 of x -~ 1 through Ol of x

- + digit period preceding

00 .of x
« digit-period following
o Initiate Comparison

. digit period féllowihg

InitiatpyCeﬁparis@p

sum of the number

 NOTES
Command. Position fefers to the allowable
digit positions for commands for the xth
step.

Address for storing
sign of Ri i v s e s

Address for storing results
of the comparison , . . 4th digit
! following end
pulse

.05 of x+ 1

!

e - even numbers ‘

d - odd numbers §

Information from a digit storage address
remains available until another D. S.
address is programmed.

Where command codes permit, combinations

of commands may be programmed simultane-
ously, and comparator addresses may be
programmed with commands or D.S. addresses
if their common parts can be made identical.

22 =0, 1, 2 or 3 in this position

92

=4, 5, 6, or T in this position
DS - Digit Storagé

M.S.D. of the U and U; precedlng initiate
cycle must be O,

First two M.S.D.'s of the Ry preceding
initiate cycle must be O.

PX 56-4

brogram AW to be plus (+) AW, the required case is satisfied, To make AW = -]
when Ri is posit}ve; we would read - AW, To do this in the caee of mulfiplica-
tien would be incorrect, hoWeeer, as the valuerfor R; would change away from
rather than toward zero,

The command code sheet gives a code number for every command and the allowed
digit'positions for that command to be given, For example, let us read one of
the variables in the above equation; take + AV, The code number to ‘read + AV
is given as 2e3, The e can be any even number O through 6, The allowed posi-
tions are "02 of x-1 through 00 of x", The meaning of this is made clear in
note No, l; The "x" refers to the step number with.which we are concerned, The
02 and 00 refer to digit positions within a step, The digit positions are num-

bered starting with the initiate step command as zero; this is necessarily so,

‘since the digit position for initiate step (IS) command is 00 of x, Thus, we

see that +AV must be read in the step before the step in which it is to be used
in computation, The same is true of the other variables with mineor differences
in-initial digit positions allowed

After all of the variables have been read from their respective addresses,
computatxon takes place automatically, All that remains is to store the sign

of the remainder for use in the next major cycle, According to‘the sheet this

1s to be done at 05 of x + 1, the fifth digit}position of the following step,

Let us illustrate with a typical equétien and how it is coded,
= (A/d) log A - b
1, Break 1nto'steps
Step No, 1 A/d

Step No,

2 log A
Step No, 3 ----
Step No, 4 (Step Ne, 2)(Step No, 1) - b~

94

PX 56-4

Each step can Se generated, by the use of 6hly ‘r’one special algorism, ~ Note
thatk ‘svtep l‘liio. 3 is blank, This is because tlie. next\ step é-fte: 's’tep Neo, 2 ﬁses
the resn’lt_; bf \s,t'ep No. 2, The results of step No, 2 are not available until
after they are stored in 05 of step No, 35' if read out as soon as possible ih
step No, 3 it will not 'be available for computation until step No, 4, Now let
us look at the proﬁram for this equation and the step-by-step analy_sis of the
program, ‘This is a general format thai all programs fbllow. - Let us assume
that AA is found at address 10, Ab at 011, Ad at 012, _

o Command | ' Digi‘t

\ ‘ Code Remarks ; ' Period .

Step No, © . (2d7 Initiate cycle‘ (1C) N

I | 260 Initiate step (IS) No, 0 . (0)
010 AA address L (1)

212 Read - W from last indicated address ~ (2)
v 012 Ad address | o 3.
Prepare Step No, 1 = < « . ;

, 203- read +AV from last indicated address (4)
214 read -AQ from last indicated address (5)
(10)1 A/d address : ‘ (6)
206 read + AU from iast indicated address (N

215 - read -AT from last indicated address ((8)

\
(260 1SN, 1 | (0
olo A address _ | (1)
202 + AW ' (2) -
Compute Step No, 1 _ 2.03 T ' v @
Prepare Step No, 2 4 206 + AU ' : | >(4)
200 no action B - (5)
002 .log A address o | (6)
204 +AQ - ("
L2056 +AT | (8)

98

PX 56-4

Store Step No, 1
Compute Step No, 2
Prepare Step No, 3

Store Stép No, 2
Prepare Step No, 4

‘ Compute Step No, 4

Store Step\No, 4

)

1

260
200
200
200
200
001
260

202
011
211
002
203
204
001
206
205

a2

260
200
200

- 200

200

260

200

200

200

200

IS No, 2

no action

no action

no action

nd action
store sign Rl.
IS No, 3

A/d [log A] - b address
+ AW

Ab

-AP _
Store sign Ry (log A)
+AV

+AQ

A/d

+AU

+ AT

IS No, 4

No action

No action

No action

No action

IS No, 5§

(0

(D

(2)

- (3)

(4
(5)
(0)

(D

(2)
(3)

(4)

(6)
(D
(8)
9)

(10

€0)

() -

(2)
(3)

4

(0)

(1)

(2)
3)

()
)

96

PX 56-<

Explanation

Step No, 0 2d7

digit period
- 00

digit period
ol, 02

alsp

Initiate cycle, This command begins operation, The d
can be any odd number 1 through 7, "d" will hereafter
be called 1,

26__ initiate step command goes at the beginning of
every step, Any number can be put in the space, It
will be called O from here on,

In the division algorism we have

U = wV; P, To get our equation
P=0
AW = AA
AV = AQ = Ad
AU = AT = A(A/d) which is the answer or output of
the step,
[+ 1 for Rj positive and V; negative
-+ 1 for R; negative and V; positive
Uil = 5 '

- 1 for Ry positive and Vi positive

- 1 for R; negative and Vi negative

This will be the result if - AW, - AQ, - AT are read,

According to the command code we can get -AA on AW by ‘giving first the

address of AA(lO) and then the command "Bead -AW from the last indicated ad-

dress” in digit period (dp) Ol or after, The address 10 was thérefore put in

dp 0l and the command "read -AW" in dp 02,

dp 03, 04, 05 Similarly we read +AV and +AQ from address 12 where

Ad is stored, - Notice it is not necessary to repeat- the
address since the command reads "from last indicated ad-

dress",

97

PX 56-4

~dp 06, 07, 08 + AU and + AT are the output of the step, but must be

Step No, 1 d

dp 01, 02, 03,
04 .

Step No, 2 d
“dp 01, 02
04 .

dp 05

.Step No, 3
dp 01, 02

p 00

p 00
0‘030

dp 0C

read for use in computation, The placg where the output
of a step is stored is arbitrary, but the customary
place is in the address whose number is the same as the
step number in which it is computed; in this case Ol.v
1,S, No, 1, Step 1 is automafically computed; step No,
2 must be prepared,

From the algorism we have

Q=%S log W

AV AU = AW = AA

AT

H

AQ = Alog A
A A is of course at address 10, and the following com-

mands read it out, The address of log'A is 002 as given

by the convention mentioned in step 00, Digit period

05 contaiﬁs a no action commahd, If there were an ad-
dress in this position the contents of the R line of
step No, b'woula be stored here and would erase anythimg
previously stored,

LS,

There is nothing to prepare for step No, 3, so the no

‘action command is given,

The sign of the remainder of a step is stored at 05 of

X + 1 according to the command code, so the remainder of

wstep'No, 1 is stored at the address given here,

1,8,
To prepare for step No, 4, the algorism gives W = g!'* p

To form our equation

'qav.

PX 56-4

A(A/d) = AU = AT, AP = -Ab, Alog A = AV = AQ
" The output of step No, 4 is ktored at 04, so this is
read by +AW in 01, 02, We want AP = -Ab,‘ s$0 these
are read in 03, 04, The sign of Ry is stored in‘dp.05.
Log A 1s read from 02 by +AV and +A0, Notice it is
not necessary to repeat the address, A/d is read from
0l where it was storgd by +AU and + AT,
Step No, 4 kdp 00 I,S, There is nothing to be prepared or stored, and
| ‘computation is automatic, The length of this step is
somewhat arbitrary, but is set by factors which will be
'mentioned later, v
Step No, 5 The result of step‘No, 4 is stored in 05 of'step No, 5.
.(1) CONSTANIS, - The U, V, and S constants are put into the computer in

binary notation, A typical coding form might look like this:

Octal Program
Constants| and Constants Remarks
S| Vol Uy, | P4{P3]P2|P1 .
. 216]0 ~_Initiate cycle
1 4 [- - |-
01 2 |- 1-]-
1110 6 [-1-]-
0l0]0 0 |- (- 1-
101 5 - |-
{ ofl1]o0 2 {-1-1]-
{111 7
0]0]1 1
110 10 4
1 1

‘The constants are staggered, This staggering causes S to reach the arith-
metic section first, and forms SAP and -SAW, Next V arrives and VAT is formed
and added to the rest, and so on, If we call the line containing initiate cycle,

00; thelleast significant digit of S.begins on Ol, of V bn 02, and of U on 03,

99

PX 56-4

Then the rows of digits are taken as octal numbers and the result is put in the
P4 column; as illustrated above, Of course there must be enough digit positions
in a step so that the constants can be'put in,

If a constant is a ﬂegatiVe number, the 2°s complement of the positive con-

3

stant is used, All complemented numbers have a series of 1°s for the most sig-

nificant digits, These 1°s should be continued up to the constants of the follow-
ing step, For example

P4 P3 P2 Pl

2 6 0 Initiate step

et O [t pot ot e D)

P

O O

ot
[<]
°

N RS €O U1 CO] = =

Thus, we see that each column is continued up to the following steﬁ,
(2) INPUT/OUTPUT. - Qomparisonégu
Quantities are intfbduced-inpo the incremental computer by means of compari-

sons, In the prohess of comparind, the digital quantity in the computer on the

~ V-line is converted to an analog current by means of a digital-to-analog con-

verter. This current and the input current are run in opposition through wind-
ings of a magnetic modulator, The output of the modulator is fed to a detector

which generates an-incrémentkof‘either +1lor-1 depending on the sign of the

~ current difference, In the case of computer outputs, the detector output is fed

to a holding circuit which adjusts.the value of the output current so that it

approaches in magnitude the ourrent from the digital-to-analog converter,

~The input circuitry is such that it can only accept currents in the fange'

trom zero to plus full scale, In order that variables which are both positive

100

PX 56-4

and negative cou;d be handled, a special command, complement comparison, was in-
troduced, The inputs are biased externally so that zero for the variable corre-
sponds to a half-scale current, Within the computer the highest order digit is
complemented,” The reason for this can be seen by considering the behavior of
the highest order digit, kNormally this digit is zero for numbefs less than half-
scale and one for‘numbers greater than half-scale, Using complement notation,
however, the highest order digit(s) is zero for positivé numbers and one for ne-
gative numbers, If we adopt the convention that positive numbers be represented
by currents greater than half scale, then it can be seen that the highest order
digit must-be.complemented,
The necessary commands for a comparison are:
P3 P2 Pl Command '
2 2 - Initiate comparison ngn—complement
- - = compérator address of modulator where variable appears
2 4 - end pulse -
o - - addfess for storing results 6f comparison
The following is a typical igggi step:
Step (xk- 1) 260 Initiate step (x-1)

quantity appears on V-line

260 Initiate step x 0
: 1

2

3

4

5

6

1

. : : 8
220 Initiate comparison 9
0 - - comparator address 10

. e @ o €O B

lol

PX 56-4

260 - Initiate Step (x + 1) 1
' 1
12

240 end pulse = = = = = = = = = 13
14

0= = address for storing 17
results of comparison

Explanation of Format,

As previously mentioned, the quantity to be compared must appear on the V-
line of the step during which it is comp;ared, Therefore, AV, is read during
the‘stépkbefore, i,e,, Inx=1, At 09 of x, thé command “comparison non-
complement” (or complement as the case may be) is given, The very next digit
period, dp 10 of x, the address of the modulator which holds this variab1e>is
given, The modulator addresses are given at the bottom of the command code
sheet, . For example, if our variable, .A, were stored in modulator 3, we would
give; in 10 of x, thebcommand -14, ~15, =16, or ~17; they all have the same ef-
fect here according to the command code sheet, Thirteen digit periods later the
end pulse is given; this stops the comparison, Four digit periods later the
address at which the result of ihe_coﬁparison is stored is given, This is the

same as the address from which AV was read, In our case, A was stored at 010,

This gives the AA needed in the computations and up-dates the value of A,

Output,
Output is exactly like input except the result of the comparison is not

stored, As mentioned above, the result of the comparison is fed into a detec~
tor and ultimately adjusts the outpui current, F
At this time it 15 thought that there should be a minimum of approximately

35 digit_periods between initiaté comparison commands, |
(3) COMBINING COMMANDS, - According to the command sheet, commands may

be programmed either simultaneously or with cbmparator addresses if their common

102

PX 56-4

pafts can be made identical, An example of this is a situation where the twelfth
digit after initiate comparison came at the digit position where "read + AE"°‘
is, Both commands could be given by 241,

(4) WORD LENGTH, - The number of digit positions in a step, also known

-as word length, must be at least as large as the largest of the following:

1) The number of commands and addresses

2) The number of digits on the R-line when it is at its maximum,
If the R-line does not overload, its maximum is about 38‘(assuming S:>U° S>V);
if it does overload,its value will be higher, If the word length is not long
enough to accommodate the R-liné;some of the most significant digits are lost
and large errors introduced.

(5) USE OF DOUBLE HEAD ON R-LINE, - Since there are 100 (octal) cores
for storage of the output of a step or result of a‘comparison, the number of
steps plus the number of comparisons would be limited to 100 octal (64 decimal)
exceﬁt for a special command, This special command allows the sign of a remain-
der to be read from a special track, thus freeing a core for some other use,

The command necessary for this operatioh‘is "Read + AW from sign of R; 1", and
the allowable digit position is P-20 of x - 1 where P = sum of digits in x -1
and x; P 2 2], |

-In normal pfactice this special command is used as often as possible if theré
are more than 64 steps plus comparisons so that core storage is available as
needed during coding without te-arranging the command structure,

When this special command is used practically the only limitation on the
length of a program is the total number of digit hositions. If the double head
on the R-line is used, the maximum word length is less than or equallto 20, and

the sum of any two consecutive words must be greater than or equal to 21,

103

A

TA D

(6) STABILITY COMPARISONS, - In order to stabilize the modulators, pro-
vision must be made in every program for zero and full scale comparisons. This
is done in the following way,

Zero Comparison,

In some stepswhere the V-line is free, make the initial constant on the V-
line equal to zero and do not program AV, This will keep V at zero, Then make
an output comparison in the usual manner, At the time of this writing the modu-
lator used for zero comparison is modulator 2, so the corresponding comparator’s
address would be put in the program,

Full.Scale Comparison,

In some other step where the V-line is free, make the 10 least significant
digits of the initial constant on the V-line equal 1, Then do not program AV

and proceed as in zero comparison, The present full scale modulator is No, 1,

104

PX 56-4

‘4, SIMULATION

In order to test the behavior of the incremental computer, and to acquire

.facility in programming and scaling for the incremental computer, a progranm which

simulatesvthe logic of the incremental computer was written for the Remington

Rand Univac Division's 1103 large scale computer, This section describes thié

program, The commands which comprise the program are listed at the end of this
section, Reference is made to the follbwing publications, obtainable from Rem-
ington Rand Univac Division, which describe the programming of the 1103,
1) "Notes on the Logic of the ERA 1103 Computer”
2)-"The‘ERA 1103 Computer System”, PX 71920, Vol, IV, Section 6,
Programming,

This simulation program was given the n%me SIMIC for SIMulation Incremental
Computer, It requires an input tape, the preparatioﬁ and format of which have
been previously described, Since this input tape contains constant inputs (R,
A, E, etc,) SIMIC give§ a static simulation of the Incremental Computer, A simu-
lation program to receive a new set of inputs every major cycle is being pre-
pared and has been given the nahe DYSIMiC, for DYnamic SIMulation, Incremental
Computer,

The SIMIC‘program contains room for more computation steps (minor cycles)
than the Incremental Computér itself, Conseguently° a program to generate varia- -
ble inputs to the program may be included in SIMIC ahead of the program to be
simulated, When used in this way,it is called POLYSIMIC since the variéble in-
puts are approximated by polynomials, This has been used primarily because DY-
SIMIC was not yet ready; When it becomes ready, POLYSIMIC will no longer be
used, | | |

When a simulation 1s to be made, a bioctal punched tape containing tﬁe SIﬁIC

program is loaded into the 1103 computer by means of the Ferranti loading routine’

105

PX 56-4

in the Service Library, It goes on the drum in addresses 40000 through 44177,

Drum addresses 44200 through 50000 plus 40x, where x is the number of minor

- cycles in the simulated program, are used for storage in the course of simula-

tion, The input tape is then inserted in the tape reader, PAK is set to 40000
and the machine started, The simulation proceeds as per instructions on the in-
put tape until the end of the input tape, If the code word "restore” appears |
at the start of a second input tape, this second simulation can be run without
re-loading the SIMIC program tape,

The SIMIC program can be divided into three tasks which the program must
performs

1) Read input tape; recognize code words; store constants and addresses
2) Carry out the simulation | |
3) Convert to decimal, flex-code, and punch out the results Qhen called
for by the input tape, | |
The SIMIC program works from high-speed storage (HSS) in accomplishing tasks 1
and 3 while 2 is done on the drum,

Starting at 40000 the program jumps'to 41776 which is the start of a block
transfer, 40000 through 41777 is transferredvto HSS and control passes to 00010
(which now contains the instruction in 40010), vThis-and the instructioﬁs follow-
ing cause one character to be read frﬁm the input tape, This character is
examined to seerif-it is a stop'éode (43) or carriage ret@rn (45), If it is a
stop, the program jumps to 00007 which is an unconditional stop, with 40000 as
NI, If a carriage return is found, thé program jumps back to 00010 to reéd
another character, If the character so examined is neither stop nor carriage
return, it is stored in the scratch pad (00017 through 00037) and the program
Jumps to 00100, As the characters are read in,they are stored in order in the

scratch pad, Starting with 00100 the program examines the appropriate number

106

PX 56-4

of characters in the scratch pad to determine the presence of one of the cdde

words, If a given code word 1s‘not”found,the program jumps to a section which

- seéks to identify the next code word, If a code word is‘found,the progrdm Jumps

to the section which handles,in an appropriate fashion,the characters which
folloﬁ that code word on the input tape, If noné of the code words areffound
the program returns to 00010, reads another character from the input tape, and
again looks for one of the code words among the last n characters read, (n de-
pends . on the number of characters that comprise a code word) For example, the

section begnnnlng with 00100 seeks to identify the code word "program”, In this

‘case n =9 for the code word to be recognized includes "carriage return” and

“shift up" characters as well as the seven letters of the word "program”, The
following table lists the code words, togeiher with the first address of the
section in which they are.recognized, and where the program goes if the code
word is or is not recognized,

- If recognized If not recognized

Address '.i o Code Word © jump to: jump_tos
00100 Cr-su-p-r-o-g-r-a-m , | 42000 . 00140 -
100140 ér-su-cisfn_s-t-agn-;-s | 06150 | 00200
00200 0-u-t-p-u-t-sp,-h-e-a-d-i-n-g . 0loo0 - 00240
60240 t-y-p-e-sp,-s-p-a-c-i-n-g B . 01100 - 00300
00300 ¢-o-m-p-u-t-e o 01200 00340".
00340 i-n-pou-t | . 00350 . ol024
01024 d-u-m-p-sp, | o4 01223
01223 r-e-s-t-o-r-e | { 01233 01252
01252 = : 01255 00010

where cr means carriage return code (45)

su means shift up code “n)
sp. means space code | (04)

= means equal sign code (44)

107

PX 56-4

If none of the code words is found, control is returned to 00010 which reads in
another character and initiates the above_sequence again, This continues until
a code word is found, |

When a code word is found, the program jumps to the indicétedvinstruction
where appropriate action is taken, When this action has been completed, the
program jumps back to 40000 and, after the blockvtransfer to HSS, begins to look
for a-"stop" or the next code word, A “"stop" code at the end of the input tape
(the incremental program being‘simulated) causes the computer to stop with 40000
in PAK, |

The following paragraphs will sketch what happens whén the various code words
are recognized, The reader should have in mind the format of the input tape as
well as the Incremental Computér algofism thch this program is designed to
simulatg, |

When "program” is récognized° the SIMIC program jumps to 42000, This.ini-
tiates a block transfer of 42000 through 42777 into HSS, and jump to 00100, AA
character is read fiom the tape and checked to see if it is a relevant,Symbol,
such as é number, - carriage return, stop.code, letters "e" {(from “end of program")
or ﬁn”, plus or minus sign, period, space, shift up, shift down, back space;
delete, or tab, Any sjmbols other than these will cause the program t§ ;ead
the tape, ignoring everything, until a carriage return is found, When a number
is found,it is converted from flex-code symbols into binary and the program
jumps to 00140.t Beginning at 00140 is a series of index jumps‘which cause the
numbers to be organized into groups of three as they come in (see iﬁcremental
tape format), There will be seven groups of three digits each, representing
step, U, V, P, Q, T, and W, After each group is completed and stored, the pro-
gram goes to 00204, Hefe, and in the steps which follow, these addresses are

manipulated in such a way as to produce the proper modifications in the steps

105

PX 56-4

from 00400 to 00437, This block of steps is the nucleus of the whole SIMIC pro-

gram, for it is here that the Incremental Computer's algorism is simulated, It

may be indexed as follows:

400 - 404 adds -SAW; to Ry ; -

405 - 411 adds Vi 18T,

412 - 416 updates U: U; = Ui-l + AUy

417 - 422 adds UiAQ11

423 - 427 adds SAP; to form R,

430 - 434 updates V: Vj =V; ; + AVi ‘

435 - 437 compares Vi with input and stores the difference.as the

l&Vi to be used in th%s step at the next majorﬂcycle,

After this block of instructiohs has been set up to carry out the algorism ac-
cording to addresses given in, say, step 000, the carriage return at the end of
the line signals that this task is completed, This causes this block to be
trénsferréd,t6 the drum at 50000 through 50037 (for step 000) and then to get
ready for the next line of addresses by again block transferring from 42000
through 42777 into HSS, The next line is handled in the same way except that
the algorism block (400 - 437) is transferred into 50040 - 50077 on the drum
(for step 001), Thus, the algorism for each step is Set up in accordance with
the input tape and transferred to the drum, The instructiods'for step xg appear
on the drum beginning at (50000g + 40gxg) the subscript 8 denotlng an octal
number, When carrying out the simulation, the computation will start at 50000
and run in order to (50000 + 40y) where jump instruction has been placed by the
program after finding the code word e-n-d (part of "end of program") opposite
say, step Y. This is a jump to 00040, At the time the computation is carried
out, HSS will contain iﬁstructiOns which decide after each major cycle, ifcit:is

timesto;stopnandmwhethetnorhnctiitéis.timeaaoppunchuoutLresﬁlts, "This ccomes .from

109

PX 56-4

the "compute” and "type spacing” numbers on the input tape, and will be taken
up later, |

After "end of program”, the input tape contains a line begﬁnning with 400
in the "step” column,{ (The six 3-digit octal numbers of this line, .are the stepb
numbers {of the incremental program) of those steps whoée V-line values are to
be punched out as output of the program,) When "400" is sensed, the SIMIC pro-
gram jumps to 00500 where the instructions at 44005 through 44012 are changed
to give tpé desired print-out,

The "stop” code at the end of the "program” section returns control to 40000,
and %he machine begins to look for the next code word, |

‘Normaily the next code word encountereq is constants, The program jumps to
00150, which ﬁow corresponds to 40150, Here, indexes at 43041 through 43043

are restored and the program jumps to 43000, As before, there is a block trans-

fer, The HSS now contains a duplicate of the instructions that are on the drum

from 43000 through 43777, Starting again at 00100. the SIMIC program reads and

decodes the‘step numbers and constants U , V., and S listed on the input tape,

00
and stores these in their proper positions, These positions are listed in the
table below, The table also includes, for convenient reférence, the locations

of other quantities used in the simulation,

‘Ultimate Location

Quantity Location in HSS at Time
Stored on Drum of Computation
Up,"s 44200 - 44477 00200 - 00477
Voi's 44500 - 44777 00500 - 00777
Ri's . 45000 - 45277 01000 - 01277

Results of | |
Comparisons 45300 - 45377 01300 - 01377
S's ' 45400 - 45677 - 01400 - 01677
- 01777

Inputs 45700 - 45777 01700

110

PX 56-4

The location of a particular Uy, V,, or S, within the rangevindicated above, de-
peads of course upon the step number associated with it, Thus, SIMIC has foom
for up to 300 (octal) steps in the program to be simulated, SIMIC uses these
locations as U-lines, V-lines, and R-lines are used in the Incremental Computer,
i,e,, the values in these registers are changed in the course of the computa-
tion, To allow the initial values to be brought back, instrﬁctions located at
43200 - 43224 mirror the U,'s and V°°s at 46000 through 46577, Later, if de-
sired, the code word "restore” will clear the R-lines and return the U,"s and
Vo's to 44200 through 44477.

After the constants have been stored, stop code causes the program to go
back to 40000 as before, and to look for the next code word, Normélly this will
be "Ihput", causing a jump to 00350 (40350’, Here 43041 - 43043 are cleared
and we jump to 43000, After the block transfer to HSS the program jumps to
00100, Because the indices at 00041 - 00043 are now cleared, the program goes
through the index jumps at 141, 142, and 143 (after each step number has been
read in) and goes (via 00144) to 00210, Here, and in subsequent instructiohs,
the input values are decoded, converted to binary, and stored in 45700 - 45777,
depending on the step number, Again, the stop code at the end of the éection
causes a jump to 40000 and initiates the search for the next code word,

The code word "output heading” causes a jump to 01000 (41000), The effect
of these instructions is simply to store the flexowriter symbols, as read from
the input tape, in locations starting with 41400, There is room for 376 (octal)
symbols in the output‘heading, since any more than this would write over some
of the instructions effécting a block transfer which is still needed, These
instructions are located at 41775 - 41777, After storing the headiné, control

returns to 40000 and a search for the next code word is initiated,

111

PX 56-4

.The code word "type spacing™ causes a jump to 01100 (41100) where the number
following this code word is decoded, converted to binary, and stored in 44003,
This time a stop code is not required to cause the program to return to 40000
and seek another code word,

The next code word is "compute", This causes a jump to 01200 (41200) where
the number following the code word is stored in 44002, Then the stored output
headings are punched out and the program jumps to 44000,

The instructiens starting at 44000 control the functions, ’First 44000 -
45177 is block-transferred to HSS and control jumps to 00040, HSS now contains
all the data needed by the computation which is on the drum starting with 50000,
as well as the instructions which decide when to punch-out the outputs (type
spacing) and when to stop the computation k"compute" number), Starting with
00040, the program sets up the output registers, punches out the first line of
outputs (for cycle 000), and jumps to 50000, Upon reaching 50000 + 40x (octal),
where x is the step number corresponding to "end of program” on the input tape,
one major cycle has been simulated, The jump to 00040 is made,'and the cycle
counter (at 00013) is compared with the "type spacing" and "compute" numbers,
Whether or not an output is punched now, the program jumps to 50000 if the num-
ber of cycles computed is less than the "compute" number, The program continues
thus until these numbers are equal, when it again jumps to 40000 and looks for
another code word, Usually this is a stop code, and the simulation stops,

The remaining code words in the foregoing table are simply convenience fea-
tures which have been added to SIMIC since its original inception, "Restore"
has been described, Use of this word at the begianing of an input tape enables
it to be fed into SIMIC after another simulation without the necessity of read-
ing in the (large) SIMIC tape again, Used within an input program it enables |

the simulated program to ' be brought back to its initial values of U, and V, and

112

PX 56-4

run again With new input values, Thus, a dynamic simulation could be achiéved

by. listing a new set of input values for each major cycle of computation, This
is rather impractical, however, as it would mean a very long list of inputs, A
"stop" code after "restore" is required to effect a return to 40000 and a search'
for the next code word,

The "=" code wad causes approximately six inches of leader to be punched
out, This is convenient in identifying portions of the output tape,

The code word "d-u-m-p-space" causes SIMIC to convert to decimal and flex-
code, the contents of all the R’s in order, When immediately followed by "V",
the program will punch out all the V's and all the R's, When followed by “U"
(i,e,, d-u-m-p-space-u) it will punch out Fhe U°s, V's, and R’S, These dumps
are invaluable in analyzing a proposed incremental computer program, especially
in deciding upon scaling and word length which are governed in part by the |
build-up of the R-line, .

It is planned to add a "monitor" function to>SIMIC also, but this has nof
been completely debugged as of the date of this report, Monitoring would com-
pare the R-line of each step with threé times that step’s scale factor and
punch 6ut the cycle and the R-line when 35 is exceeded, It would do this each
time an output is called for ("type spacing” number), The primary reason for
adding this to SIMIC is that DYSIMIC, which has this useful feature, is not yet
ready, It is plénned to test Incremental Computer programs on POLYSIMIC until

DYSIMIC is ready for use,

113

0B 9581

Digital Computer for Fire Control

) g
~ -

i

©

9686 0

Computer - Sides Off

0B 9565

Magnetic Storage Drums - Incremental
Computer and Univac Scientific

_,W,\M.Jmmn_ﬁm,..m
) , :.

9LG6 40

Computer - Magnetic Switch Wiring Exposed

0B 9582

Subminiature Tube Classes and Driver Units in Computer

0 9850

r——
i z =80

I =
R

rﬁm A2y

| EEEES
. rﬂ,
== = |
= j
o aod
1
i,
s
:
=4
2
3

)

7

B

i
il

J
e
i

Computer - Drum and Power Supply

0A 9590

YI®|lelele oo |w]el

Insertion

of Magnetic Switch

Gnmananann
o 3 b 2 r

y iy | > . HERANARLERBEEE S 1
- - ey

ECTTTErT T
3 o)

el o ——
NessssarkkascEn CIrerrrerrerey

3 (

. Eesssmsssimase

TERERimanARsAsL
SS
POLAT A

o AEEG

{

Sl iy
Eelssasexnzenes () 4
- o g

¢6S6 Y0

Computer - Insertion of Subminiature Tube Classes

11U I9ATI(Q 9STnd

0B 9597

0A 9111

Magnetic Switch

0 9610

)

¥ an
e

g ol

Subminiature Tube Unit

0B 9458

Magnetic Storage Drum - Incremental Computer

0A 8921

O 0 O 0O O QO

O O OO0 OO O O O

(«0# ((0}/ @) (0“ &.‘) ((0) ('

Core Matrix - Random Access Storage

quamd tnby Butweaboxg

0B 9606

©00 000 908 000

000 000 900 00N

(@) ol

quoig - 11U 1013u0) weiboxyg

0 9853

0 9855

Program Control Unit - Inside

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093a
	093b
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16

